|
|
|
New point view of spectral gap in functional spaces for birth-death processes |
Yutao MA( ),Yonghua MAO |
| School of Mathematical Sciences, Key Laboratory on Mathematics and Complex System, Beijing Normal University, Beijing 100875, China |
|
|
|
|
Abstract Constructing some proper functional spaces, we obtain the corresponding norm for the operator (-L)-1, and then, via spectral theory, we revisit two variational formulas of the spectral gap, given by M. F. Chen [Front. Math. China, 2010, 5(3): 379-515], for transient birth-death processes.
|
| Keywords
Birth-death processes
Dirichlet first eigenvalue
variational formula
spectral theory
duality
|
|
Corresponding Author(s):
Yutao MA
|
|
Issue Date: 24 June 2014
|
|
| 1 |
ChenM-F. Estimation of spectral gap for Markov chains. Acta Math Sin (New Ser), 1996, 12(4): 337-360 doi: 10.1007/BF02106789
|
| 2 |
ChenM-F. Analytic proof of dual variational formula for the first eigenvalue in dimension one. Sci Sin, Ser A, 1999, 42(8): 805-815
|
| 3 |
ChenM-F. Variational formulas and approximation theorems for the first eigenvalue. Sci China, Ser A, 2001, 44(4): 409-418 doi: 10.1007/BF02881877
|
| 4 |
ChenM-F. From Markov Chains to Non-equilibrium Particle Systems. 2nd ed. Berlin: Springer, 2004
|
| 5 |
ChenM-F. Speed of stability for birth death processes. Front Math China, 2010, 5(3): 379-515 doi: 10.1007/s11464-010-0068-7
|
| 6 |
DjelloutH, WuL M. Lipschitzian norm estimate of one-dimensional Poisson equations and applications. Ann Inst Henri Poincaré Probab Stat, 2011, 47(2): 450-465 doi: 10.1214/10-AIHP360
|
| 7 |
KarlinS, McGregorJ. The classification of birth-death processes. Trans Amer Math Soc, 1957, 86(2): 366-400 doi: 10.1090/S0002-9947-1957-0094854-8
|
| 8 |
LiuW, MaY-T. Spectral gap and convex concentration inequalities for birth-death processes. Ann Inst Henri Poincaré Probab Stat, 2009, 45(1): 58-69 doi: 10.1214/07-AIHP149
|
| 9 |
MeynS P, TweedieR L. Markov Chains and Stochastic Stability. 3rd ed. Berlin: Springer-Verlag, 1996
|
| 10 |
YosidaY. Functional Analysis. 6th ed. Berlin: Springer-Verlag, 1999
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|