Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2014, Vol. 9 Issue (3) : 523-535    https://doi.org/10.1007/s11464-013-0276-z
RESEARCH ARTICLE
New point view of spectral gap in functional spaces for birth-death processes
Yutao MA(),Yonghua MAO
School of Mathematical Sciences, Key Laboratory on Mathematics and Complex System, Beijing Normal University, Beijing 100875, China
 Download: PDF(138 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Constructing some proper functional spaces, we obtain the corresponding norm for the operator (-L)-1, and then, via spectral theory, we revisit two variational formulas of the spectral gap, given by M. F. Chen [Front. Math. China, 2010, 5(3): 379-515], for transient birth-death processes.

Keywords Birth-death processes      Dirichlet first eigenvalue      variational formula      spectral theory      duality     
Corresponding Author(s): Yutao MA   
Issue Date: 24 June 2014
 Cite this article:   
Yutao MA,Yonghua MAO. New point view of spectral gap in functional spaces for birth-death processes[J]. Front. Math. China, 2014, 9(3): 523-535.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-013-0276-z
https://academic.hep.com.cn/fmc/EN/Y2014/V9/I3/523
1 ChenM-F. Estimation of spectral gap for Markov chains. Acta Math Sin (New Ser), 1996, 12(4): 337-360
doi: 10.1007/BF02106789
2 ChenM-F. Analytic proof of dual variational formula for the first eigenvalue in dimension one. Sci Sin, Ser A, 1999, 42(8): 805-815
3 ChenM-F. Variational formulas and approximation theorems for the first eigenvalue. Sci China, Ser A, 2001, 44(4): 409-418
doi: 10.1007/BF02881877
4 ChenM-F. From Markov Chains to Non-equilibrium Particle Systems. 2nd ed. Berlin: Springer, 2004
5 ChenM-F. Speed of stability for birth death processes. Front Math China, 2010, 5(3): 379-515
doi: 10.1007/s11464-010-0068-7
6 DjelloutH, WuL M. Lipschitzian norm estimate of one-dimensional Poisson equations and applications. Ann Inst Henri Poincaré Probab Stat, 2011, 47(2): 450-465
doi: 10.1214/10-AIHP360
7 KarlinS, McGregorJ. The classification of birth-death processes. Trans Amer Math Soc, 1957, 86(2): 366-400
doi: 10.1090/S0002-9947-1957-0094854-8
8 LiuW, MaY-T. Spectral gap and convex concentration inequalities for birth-death processes. Ann Inst Henri Poincaré Probab Stat, 2009, 45(1): 58-69
doi: 10.1214/07-AIHP149
9 MeynS P, TweedieR L. Markov Chains and Stochastic Stability. 3rd ed. Berlin: Springer-Verlag, 1996
10 YosidaY. Functional Analysis. 6th ed. Berlin: Springer-Verlag, 1999
[1] Bingliang SHEN,Ling LIU. Center construction and duality of category of Hom-Yetter-Drinfeld modules over monoidal Hom-Hopf algebras[J]. Front. Math. China, 2017, 12(1): 177-197.
[2] Mu-Fa CHEN,Lingdi WANG,Yuhui ZHANG. Mixed eigenvalues of discrete p-Laplacian[J]. Front. Math. China, 2014, 9(6): 1261-1292.
[3] Yonghua MAO,Yuhui ZHANG. Explicit criteria on separation cutoff for birth and death chains[J]. Front. Math. China, 2014, 9(4): 881-898.
[4] Mu-Fa CHEN, Lingdi WANG, Yuhui ZHANG. Mixed principal eigenvalues in dimension one[J]. Front Math Chin, 2013, 8(2): 317-343.
[5] Zhichao SHAN, Dayue CHEN. Voter model in a random environment in ?d[J]. Front Math Chin, 2012, 7(5): 895-905.
[6] Mu-Fa CHEN. Lower bounds of principal eigenvalue in dimension one[J]. Front Math Chin, 2012, 7(4): 645-668.
[7] Jian WANG. First eigenvalue of birth-death processes with killing[J]. Front Math Chin, 2012, 7(3): 561-572.
[8] Yong LIU, Jianglun WU, Fengxia YANG, Jianliang ZHAI. An ergodic theorem of a parabolic Anderson model driven by Lévy noise[J]. Front Math Chin, 2011, 6(6): 1147-1183.
[9] Mu-Fa CHEN, . Speed of stability for birth-death processes[J]. Front. Math. China, 2010, 5(3): 379-515.
[10] TANG Xin. Construct irreducible representations of quantum groups (())[J]. Front. Math. China, 2008, 3(3): 371-397.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed