Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2013, Vol. 8 Issue (2) : 281-299    https://doi.org/10.1007/s11464-013-0282-1
REVIEW ARTICLE
Spectral methods for weakly singular Volterra integral equations with pantograph delays
Ran ZHANG1, Benxi ZHU1(), Hehu XIE2
1. School of Mathematics, Jilin University, Changchun 130012, China; 2. LSEC, NCMIS, Institute of Computational Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
 Download: PDF(211 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, the convergence analysis of the Volterra integral equation of second kind with weakly singular kernel and pantograph delays is provided. We use some function transformations and variable transformations to change the equation into a new Volterra integral equation with pantograph delays defined on the interval [-1, 1], so that the Jacobi orthogonal polynomial theory can be applied conveniently. We provide a rigorous error analysis for the proposed method in the L-norm and the weighted L2-norm. Numerical examples are presented to complement the theoretical convergence results.

Keywords Volterra integral equation      vanishing delay      weakly singular kernel      Jacobi-spectral collocation method      error analysis     
Corresponding Author(s): ZHU Benxi,Email:zhubx@jlu.edu.cn   
Issue Date: 01 April 2013
 Cite this article:   
Ran ZHANG,Benxi ZHU,Hehu XIE. Spectral methods for weakly singular Volterra integral equations with pantograph delays[J]. Front Math Chin, 2013, 8(2): 281-299.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-013-0282-1
https://academic.hep.com.cn/fmc/EN/Y2013/V8/I2/281
1 Ali I, Brunner H, Tang T. A spectral method for pantograph-type delay differential equations and its convergence analysis. J Comput Math , 2009, 27: 254-265
2 Ali I, Brunner H, Tang T. Spectral method for pantograph-type differential and integral equations with multiple delays. Front Math China , 2009, 4: 49-61
doi: 10.1007/s11464-009-0010-z
3 Brunner H. Nonpolynomial spline collocation for Volterra equations with weakly singular kernels. SIAM J Numer Anal , 1983, 20: 1106-1119
doi: 10.1137/0720080
4 Brunner H. The numerical solutions of weakly singular Volterra integral equations by collocation on graded mesh. Math Comp , 1985, 45: 417-437
doi: 10.1090/S0025-5718-1985-0804933-3
5 Brunner H. Collocation Methods for Volterra Integral and Related Functional Equations Methods. Cambridge Monographs on Applied and Computational Mathematics , Vol 15. Cambridge: Cambridge University Press, 2004
6 Canuto C, Hussaini M Y, Qarteroni A, Zang T A. Spectral Methods Fundamentals in Single Domains. New York: Springer-Verlag, 2006
7 Chen Y, Tang T. Spectral methods for weakly singular Volterra integral equations with smooth solutions. J Comput Appl Math , 2009, 233: 938-950
doi: 10.1016/j.cam.2009.08.057
8 Chen Y, Tang T. Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel. Math Comp , 2010, 79: 147-167
doi: 10.1090/S0025-5718-09-02269-8
9 Diogo T, McKee S, Tang T. Collocation methods for second-kind Volterra integral equations with weakly singular kernels. Proc Roy Soc Edinburgh Sect A , 1994, 124: 199-210
doi: 10.1017/S0308210500028432
10 Gapobianco G, Cardone A. A parallel algorithm for large systems of Volterra integral equations of Abel type. J Comput Appl Math , 2008, 220: 749-758
doi: 10.1016/j.cam.2008.05.026
11 Gapobianco G, Conte D. An efficient and fast parallel methods for Volterra integral equations of Abel type. J Comput Appl Math , 2006, 189: 481-493
doi: 10.1016/j.cam.2005.03.056
12 Gapobianco G, Conte D, Prete I D. High performance parallel numerical methods for Volterra equations with weakly singular kernels. J Comput Appl Math , 2009, 228: 571-579
doi: 10.1016/j.cam.2008.03.027
13 Gapobianco G, Crisci M R, Russo E. Nonstationary waveform relaxation methods for Abel equations. J Integral Equations Appl , 2004, 16: 53-65
doi: 10.1216/jiea/1181075258
14 Gogatishvill A, Lang J. The generalized hardy operator with kernel and variable integral limits in banach function spaces. J Inequal Appl , 1999, 4(1): 1-16
15 Guo B, Wang L. Jacobi interpolation approximations and their applications to singular differential equations. Adv Comput Math , 2001, 14: 227-276
doi: 10.1023/A:1016681018268
16 Guo B, Wang L. Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces. J Approx Theory , 2004, 128: 1-41
doi: 10.1016/j.jat.2004.03.008
17 Henry D. Geometric Theory of Semilinear Parabolic Equations. New York: Springer-Verlag, 1989
18 Kufner A, Persson L E. Weighted Inequalities of Hardy Type. New York: World Scientific, 2003
19 Mastroianni G, Occorsio D. Optimal systems of nodes for Lagrange interpolation on bounded intervals. A survey. J Comput Appl Math , 2001, 134: 325-341
doi: 10.1016/S0377-0427(00)00557-4
20 Nevai P. Mean convergence of Lagrange interpolation. III. Trans Amer Math Soc , 1984, 282: 669-698
doi: 10.1090/S0002-9947-1984-0732113-4
21 Ragozin D L. Polynomial approximation on compact manifolds and homogeneous spaces. Trans Amer Math Soc , 1970, 150: 41-53
doi: 10.1090/S0002-9947-1970-0410210-0
22 Ragozin D L. Constructive polynomial approximation on spheres and projective spaces. Trans Amer Math Soc , 1971, 162: 157-170
23 Samko S G, Cardoso R P. Sonine integral equations of the first kind in Lp(0, b).Fract Calc Appl Anal , 2003, 6(3): 235-258
24 Shen J, Tang T. Spectral and High-Order Methods with Applications. Beijing: Science Press, 2006
25 Shen J, Wang L L. Some recent advances on spectral methods for unbounded domains. Commun Comput Phys , 2009, 5: 195-241
26 Tang T, Xu X. Accuracy enhancement using spectral postprocessing for differential equations and integral equations. Commun Comput Phys , 2009, 5: 779-792
27 Tang T, Xu X, Cheng J. On spectral methods for Volterra type integral equations and the convergence analysis. J Comput Math , 2008, 26: 825-837
28 Welfert B D. A note on classical Gauss-Radau and Gauss-Lobatto quadratures. Appl Numer Math , 2010, 60: 637-644
doi: 10.1016/j.apnum.2010.03.006
[1] Yunxia WEI, Yanping CHEN, Xiulian SHI, Yuanyuan ZHANG. Spectral method for multidimensional Volterra integral equation with regular kernel[J]. Front. Math. China, 2019, 14(2): 435-448.
[2] Liang WEI, Zhiping LI. Fourier-Chebyshev spectral method for cavitation computation in nonlinear elasticity[J]. Front. Math. China, 2018, 13(1): 203-226.
[3] Zhanwen YANG, Hermann BRUNNER. Blow-up behavior of Hammerstein-type delay Volterra integral equations[J]. Front Math Chin, 2013, 8(2): 261-280.
[4] Marek KOLK, Arvet PEDAS. Numerical solution of Volterra integral equations with singularities[J]. Front Math Chin, 2013, 8(2): 239-259.
[5] Xianjuan LI, Tao TANG. Convergence analysis of Jacobi spectral collocation methods for Abel-Volterra integral equations of second kind[J]. Front Math Chin, 2012, 7(1): 69-84.
[6] Ishtiaq ALI, Hermann BRUNNER, Tao TANG. Spectral methods for pantograph-type differential and integral equations with multiple delays[J]. Front Math Chin, 2009, 4(1): 49-61.
[7] Hermann BRUNNER. Current work and open problems in the numerical analysis of Volterra functional equations with vanishing delays[J]. Front Math Chin, 2009, 4(1): 3-22.
[8] YAN Qingyou, WEI Xiaopeng. Error analysis of symplectic Lanczos method for Hamiltonian eigenvalue problem[J]. Front. Math. China, 2006, 1(3): 430-451.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed