|
|
|
Blow-up behavior of Hammerstein-type delay Volterra integral equations |
Zhanwen YANG1( ), Hermann BRUNNER2 |
| 1. Science Research Center, Academy of Fundamental and Interdisciplinary Science; Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China; 2. Department of Mathematics, Hong Kong Baptist University, Hong Kong SAR, China; Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s, NL A1C 557, Canada |
|
|
|
|
Abstract We consider the blow-up behavior of Hammerstein-type delay Volterra integral equations (DVIEs). Two types of delays, i.e., vanishing delay (pantograph delay) and non-vanishing delay (constant delay), are considered. With the same assumptions of Volterra integral equations (VIEs), in a similar technology to VIEs, the blow-up conditions of the two types of DVIEs are given. he blow-up behaviors of DVIEs with non-vanishing delay vary with different nitial functions and the length of the lag, while DVIEs with pantograph delay wn the same blow-up behavior of VIEs. Some examples and applications to elay differential equations illustrate this influence.
|
| Keywords
Delay Volterra integral equation (DVIE)
non-vanishing delay
vanishing delay
blow-up of solution
|
|
Corresponding Author(s):
YANG Zhanwen,Email:yangzhan_wen@126.com
|
|
Issue Date: 01 April 2013
|
|
| 1 |
Bana? J. An existence theorem for nonlinear Volterra integral equation with deviating argument. Rend Circ Mat Palermo , 1986, 35: 82-89 doi: 10.1007/BF02844043
|
| 2 |
Bélair J. Population models with state-dependent delays. In: Arino O, Axelrod D E, Kimmel M, eds. Mathematical Population Dynamics. Lecture Notes in Pure and Appl Math , vol 131. New York: Marcel Dekker, 1991, 165-176
|
| 3 |
Bownds J M, Cushing J M, Schutte R. Existence, uniqueness, and extendibility of solutions of Volterra integral systems with multiple, variable lags. Funkcial Ekvac , 1976, 19: 101-111
|
| 4 |
Brauer F, van den Driessche P. Some directions for mathematical epidemiology. In: Ruan S, Wolkowicz G S K, Wu J, eds. Dynamical Systems and Their Applications in Biology (Cape Breton, 2001). Fields Institute Communications , Vol 36. Providence: Amer Math Soc, 2003, 95-112
|
| 5 |
Brunner H. Collocation Methods for Volterra Integral and Related Functional Equations. Cambridge Monographs on Applied and Computational Mathematics , Vol 15. Cambridge: Cambridge University Press, 2004
|
| 6 |
Brunner H, Yang Z W. Blow-up behavior of Hammerstein-type Volterra integra equations. J Integral Equations Appl (to appear)
|
| 7 |
Busenberg S, Cooke K L. The effect of integral conditions in certain equations modelling epidemics and population growth. J Math Biol , 1980, 10: 13-32 doi: 10.1007/BF00276393
|
| 8 |
Ca?ada A, Zertiti A. Method of upper and lower solutions for nonlinear delay integral equations modelling epidemics and population growth. Math Models Methods Appl Sci , 1994, 4: 107-119 doi: 10.1142/S0218202594000078
|
| 9 |
Ca?ada A, Zertiti A. Systems of nonlinear delay integral equations modelling population growth in a periodic environment. Comment Math Univ Carolin , 1994, 35: 633-644
|
| 10 |
Cardone A, Del Prete I, Nitsch C. Gaussian direct quadrature methods for double delay Volterra integral equations. Electron Trans Numer Anal , 2009, 35: 201-216
|
| 11 |
Chambers Ll G. Some properties of the functional equation ?(x) = f(x) + ∫0λxg(x, y, ?(y))dy.Internat J Math Sci , 1990, 14: 27-44 doi: 10.1155/S0161171291000030
|
| 12 |
Cooke K L. An epidemic equation with immigration. Math Biosci , 1976, 29: 135-158 doi: 10.1016/0025-5564(76)90033-X
|
| 13 |
Cooke K L, Yorke J A. Some equations modelling growth processes and epidemics. Math Biosci , 1973, 16: 75-101 doi: 10.1016/0025-5564(73)90046-1
|
| 14 |
Ezzinbi K, Jazar M. Blow-up Results for some nonlinear delay differential equations. Positivity , 2006, 10: 329-341 doi: 10.1007/s11117-005-0026-x
|
| 15 |
Golaszewska A, Turo J. On nonlinear Volterra integral equations with state dependent delays in several variables. Z Anal Anwend , 2010, 29: 91-106 doi: 10.4171/ZAA/1399
|
| 16 |
Hethcote H W, van den Driessche P. Two SIS epidemiologic models with delays. J Math Biol , 2000, 40: 3-26 doi: 10.1007/s002850050003
|
| 17 |
Linz P. Analytical and Numerical Methods for Volterra Equations. Philadelphia: SIAM, 1985 doi: 10.1137/1.9781611970852
|
| 18 |
Malolepszy T. Nonlinear Volterra integral equations and the Schr?der functional equation. Nonlinear Anal , 2011, 74: 424-432 doi: 10.1016/j.na.2010.08.054
|
| 19 |
Metz J A J, Diekmann O. The Dynamics of Physiologically Structured Populations. Lecture Notes in Biomath , Vol 68. Berlin-Heidelberg: Springer-Verlag , 1986
|
| 20 |
Miller R K. Nonlinear Volterra Integral Equations. Menlo Park: W A Benjamin, 1971
|
| 21 |
Mydlarczyk W. The blow-up solutions of integral equations. Colloq Math , 1999, 79: 147-156
|
| 22 |
Olmstead W E. Ignition of a combustible half space. SIAMJ Appl Math , 1983, 43: 1-15 doi: 10.1137/0143001
|
| 23 |
Smith H L. On periodic solutions of a delay integral equation modelling epidemics. J Math Biol , 1977, 4: 69-80 doi: 10.1007/BF00276353
|
| 24 |
Waltham P. Deterministic Threshold Models in the Theory of Epidemics. Lecture Notes in Biomath , Vol 1. Berlin-Heidelberg: Springer-Verlag, 1974
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|