Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2014, Vol. 9 Issue (1) : 151-179    https://doi.org/10.1007/s11464-013-0312-z
RESEARCH ARTICLE
Asymptotic behavior for bi-fractional regression models via Malliavin calculus
Guangjun SHEN1, Litan YAN2()
1. Department of Mathematics, Anhui Normal University, Wuhu 241000, China; 2. Department of Mathematics, Donghua University, Shanghai 201620, China
 Download: PDF(241 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Let BH1,K1 and BH2,K2 be two independent bi-fractional Brownian motions. In this paper, as a natural extension to the fractional regression model, we consider the asymptotic behavior of the sequenceSn:=i=0n-1K(nαBiH1,K1)(Bi+1H2,K2-BiH2,K2),where K is a standard Gaussian kernel function and the bandwidth parameter αsatisfies certain hypotheses. We show that its limiting distribution is a mixed normal law involving the local time of the bi-fractional Brownian motion BH1,K1. We also give the stable convergence of the sequence Sn by using the techniques of the Malliavin calculus.

Keywords Bi-fractional Brownian motion (bi-fBm)      Malliavin calculus      regression model     
Corresponding Author(s): YAN Litan,Email:litanyan@dhu.edu.cn   
Issue Date: 01 February 2014
 Cite this article:   
Guangjun SHEN,Litan YAN. Asymptotic behavior for bi-fractional regression models via Malliavin calculus[J]. Front Math Chin, 2014, 9(1): 151-179.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-013-0312-z
https://academic.hep.com.cn/fmc/EN/Y2014/V9/I1/151
1 Alós E, Mazet O, Nualart D. Stochastic calculus with respect to Gaussian processes. Ann Probab , 2001, 29: 766-801
doi: 10.1214/aop/1008956692
2 Biagini F, Hu Y, Oksendal B, Zhang T. Stochastic Calculus for Fractional Brownian Motion and Applications. London: Springer-Verlag, 2008
doi: 10.1007/978-1-84628-797-8
3 Bourguin S, Tudor C A. Asymptotic theory for fractional regression models via Malliavin calculus. J Theoret Probab , 2012, 25: 536-564
doi: 10.1007/s10959-010-0302-y
4 Chen Z. Polar functions of multiparameter bifractional Brownian Sheets. Acta Math Appl Sin Engl Ser , 2009, 25: 255-572
doi: 10.1007/s10255-007-7084-8
5 Chen Z, Li H. Polar sets of multiparameter bifractional Brownian sheets. Acta Math Sci Ser B , 2010, 30: 857-872
doi: 10.1016/S0252-9602(10)60084-7
6 Duncan T E, Hu Y, Duncan B P. Stochastic calculus for fractional Brownian motion. I. Theory. SIAM J Control Optim , 2000, 38: 582-612
doi: 10.1137/S036301299834171X
7 Eddahbi M, Lacayo R, Sole J L, Tudor C A, Vives J. Regularity of the local time for the d-dimensional fractional Brownian motion with N-parameters. Stoch Anal Appl , 2001, 23: 383-400
doi: 10.1081/SAP-200050121
8 Es-sebaiy K, Tudor C A. Multidimensional bifractional Brownian motion: It? and Tanaka formulas. Stoch Dyn , 2007, 7: 366-388
doi: 10.1142/S0219493707002050
9 Geman D, Horowitz J. Occupation densities. Ann Probab , 1980, 8: 1-67
doi: 10.1214/aop/1176994824
10 Houdré C, Villa J. An example of infinite dimensional quasi-helix. Stoch Models, 2003, 336: 195-201
11 Jiang Y, Wang Y. Self-intersection local times and collision local times of bifractional Brownian motions. Sci China Ser A , 2009, 52: 1905-1919
doi: 10.1007/s11425-009-0081-z
12 Karlsen H A, Mykklebust T, Tjostheim D. Nonparametric estimation in a nonlinear cointegrated model. Ann Statistics , 2007, 35: 252-299
doi: 10.1214/009053606000001181
13 Karlsen H A, Tjostheim D. Nonparametric estimation in null recurrent time series. Ann Statistics , 2001, 29: 372-416
doi: 10.1214/aos/1009210546
14 Kruk I, Russo F, Tudor C A. Wiener integrals, Malliavin calculus and covariance measure structure. J Funct Anal , 2007, 249: 92-142
doi: 10.1016/j.jfa.2007.03.031
15 Luan N. Hausdorff measures of the image, graph and level set of bifractional Brownian motion. Sci China Math , 2010, 53: 2973-2992
doi: 10.1007/s11425-010-4100-x
16 Nualart D. Malliavin Calculus and Related Topics. New York: Springer, 2006
17 Russo F, Tudor C A. On the bifractional Brownian motion. Stochastic Process Appl , 2006, 5: 830-856
doi: 10.1016/j.spa.2005.11.013
18 Schienle M. Nonparametric Nonstationary Regression. Ph D Thesis. Mannheim: University of Mannheim , 2008
19 Shen G, Yan L. Smoothness for the collision local times of bifractional Brownian motions. Sci China Math , 2011, 54: 1859-1873
doi: 10.1007/s11425-011-4228-3
20 Tudor C A, Xiao Y. Sample path properties of bifractional brownian motion. Bernoulli , 2007, 13: 1023-1052
doi: 10.3150/07-BEJ6110
21 Wang Q, Phillips P C B. Asymptotic theory for the local time density estimation and nonparametric cointegrated regression. Econometric Theory , 2009, 25: 710-738
doi: 10.1017/S0266466608090269
22 Wang Q, Phillips P C B. Structural nonparametric cointegrating regression. Econometrica , 2009, 77: 1901-1948
doi: 10.3982/ECTA7732
23 Wang W. On p-variation of bifractional Brownian motion. Appl Math J Chinese Univ , 2011, 26: 127-141
doi: 10.1007/s11766-010-2454-7
24 Yan L, Gao B, Liu J. Quadratic covariation and the Bouleau-Yor identity for a bi-fractional Brownian motion. Preprint , 2012
25 Yan L, Liu J, Chen C. On the collision local time of bifractional Brownian motions. Stoch Dyn , 2009, 9: 479-491
doi: 10.1142/S0219493709002749
26 Yan L, Xiang J. The generalized quadratic covariation for a bi-fBm. J Nat Sci Heilongjiang Univ , 2011, 28: 20-37
[1] Xiaobin SUN, Yingchao XIE. Smooth densities for SDEs driven by subordinated Brownian motion with Markovian switching[J]. Front. Math. China, 2018, 13(6): 1447-1467.
[2] Yulin SONG. Density functions of doubly-perturbed stochastic differential equations with jumps[J]. Front. Math. China, 2018, 13(1): 161-172.
[3] Xiliang FAN. Stochastic Volterra equations driven by fractional Brownian motion[J]. Front. Math. China, 2015, 10(3): 595-620.
[4] Ling CHEN, Laisheng WEI. Superiority of empirical Bayes estimation of error variance in linear model[J]. Front Math Chin, 2012, 7(4): 629-644.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed