|
|
|
Asymptotic behavior for bi-fractional regression models via Malliavin calculus |
Guangjun SHEN1, Litan YAN2( ) |
| 1. Department of Mathematics, Anhui Normal University, Wuhu 241000, China; 2. Department of Mathematics, Donghua University, Shanghai 201620, China |
|
|
|
|
Abstract Let BH1,K1 and BH2,K2 be two independent bi-fractional Brownian motions. In this paper, as a natural extension to the fractional regression model, we consider the asymptotic behavior of the sequenceSn:=∑i=0n-1K(nαBiH1,K1)(Bi+1H2,K2-BiH2,K2),where K is a standard Gaussian kernel function and the bandwidth parameter αsatisfies certain hypotheses. We show that its limiting distribution is a mixed normal law involving the local time of the bi-fractional Brownian motion BH1,K1. We also give the stable convergence of the sequence Sn by using the techniques of the Malliavin calculus.
|
| Keywords
Bi-fractional Brownian motion (bi-fBm)
Malliavin calculus
regression model
|
|
Corresponding Author(s):
YAN Litan,Email:litanyan@dhu.edu.cn
|
|
Issue Date: 01 February 2014
|
|
| 1 |
Alós E, Mazet O, Nualart D. Stochastic calculus with respect to Gaussian processes. Ann Probab , 2001, 29: 766-801 doi: 10.1214/aop/1008956692
|
| 2 |
Biagini F, Hu Y, Oksendal B, Zhang T. Stochastic Calculus for Fractional Brownian Motion and Applications. London: Springer-Verlag, 2008 doi: 10.1007/978-1-84628-797-8
|
| 3 |
Bourguin S, Tudor C A. Asymptotic theory for fractional regression models via Malliavin calculus. J Theoret Probab , 2012, 25: 536-564 doi: 10.1007/s10959-010-0302-y
|
| 4 |
Chen Z. Polar functions of multiparameter bifractional Brownian Sheets. Acta Math Appl Sin Engl Ser , 2009, 25: 255-572 doi: 10.1007/s10255-007-7084-8
|
| 5 |
Chen Z, Li H. Polar sets of multiparameter bifractional Brownian sheets. Acta Math Sci Ser B , 2010, 30: 857-872 doi: 10.1016/S0252-9602(10)60084-7
|
| 6 |
Duncan T E, Hu Y, Duncan B P. Stochastic calculus for fractional Brownian motion. I. Theory. SIAM J Control Optim , 2000, 38: 582-612 doi: 10.1137/S036301299834171X
|
| 7 |
Eddahbi M, Lacayo R, Sole J L, Tudor C A, Vives J. Regularity of the local time for the d-dimensional fractional Brownian motion with N-parameters. Stoch Anal Appl , 2001, 23: 383-400 doi: 10.1081/SAP-200050121
|
| 8 |
Es-sebaiy K, Tudor C A. Multidimensional bifractional Brownian motion: It? and Tanaka formulas. Stoch Dyn , 2007, 7: 366-388 doi: 10.1142/S0219493707002050
|
| 9 |
Geman D, Horowitz J. Occupation densities. Ann Probab , 1980, 8: 1-67 doi: 10.1214/aop/1176994824
|
| 10 |
Houdré C, Villa J. An example of infinite dimensional quasi-helix. Stoch Models, 2003, 336: 195-201
|
| 11 |
Jiang Y, Wang Y. Self-intersection local times and collision local times of bifractional Brownian motions. Sci China Ser A , 2009, 52: 1905-1919 doi: 10.1007/s11425-009-0081-z
|
| 12 |
Karlsen H A, Mykklebust T, Tjostheim D. Nonparametric estimation in a nonlinear cointegrated model. Ann Statistics , 2007, 35: 252-299 doi: 10.1214/009053606000001181
|
| 13 |
Karlsen H A, Tjostheim D. Nonparametric estimation in null recurrent time series. Ann Statistics , 2001, 29: 372-416 doi: 10.1214/aos/1009210546
|
| 14 |
Kruk I, Russo F, Tudor C A. Wiener integrals, Malliavin calculus and covariance measure structure. J Funct Anal , 2007, 249: 92-142 doi: 10.1016/j.jfa.2007.03.031
|
| 15 |
Luan N. Hausdorff measures of the image, graph and level set of bifractional Brownian motion. Sci China Math , 2010, 53: 2973-2992 doi: 10.1007/s11425-010-4100-x
|
| 16 |
Nualart D. Malliavin Calculus and Related Topics. New York: Springer, 2006
|
| 17 |
Russo F, Tudor C A. On the bifractional Brownian motion. Stochastic Process Appl , 2006, 5: 830-856 doi: 10.1016/j.spa.2005.11.013
|
| 18 |
Schienle M. Nonparametric Nonstationary Regression. Ph D Thesis. Mannheim: University of Mannheim , 2008
|
| 19 |
Shen G, Yan L. Smoothness for the collision local times of bifractional Brownian motions. Sci China Math , 2011, 54: 1859-1873 doi: 10.1007/s11425-011-4228-3
|
| 20 |
Tudor C A, Xiao Y. Sample path properties of bifractional brownian motion. Bernoulli , 2007, 13: 1023-1052 doi: 10.3150/07-BEJ6110
|
| 21 |
Wang Q, Phillips P C B. Asymptotic theory for the local time density estimation and nonparametric cointegrated regression. Econometric Theory , 2009, 25: 710-738 doi: 10.1017/S0266466608090269
|
| 22 |
Wang Q, Phillips P C B. Structural nonparametric cointegrating regression. Econometrica , 2009, 77: 1901-1948 doi: 10.3982/ECTA7732
|
| 23 |
Wang W. On p-variation of bifractional Brownian motion. Appl Math J Chinese Univ , 2011, 26: 127-141 doi: 10.1007/s11766-010-2454-7
|
| 24 |
Yan L, Gao B, Liu J. Quadratic covariation and the Bouleau-Yor identity for a bi-fractional Brownian motion. Preprint , 2012
|
| 25 |
Yan L, Liu J, Chen C. On the collision local time of bifractional Brownian motions. Stoch Dyn , 2009, 9: 479-491 doi: 10.1142/S0219493709002749
|
| 26 |
Yan L, Xiang J. The generalized quadratic covariation for a bi-fBm. J Nat Sci Heilongjiang Univ , 2011, 28: 20-37
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|