Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    0, Vol. Issue () : 1227-1236    https://doi.org/10.1007/s11464-013-0320-z
RESEARCH ARTICLE
Thompson’s conjecture for alternating group of degree 22
Mingchun XU()
School of Mathematics, South China Normal University, Guangzhou 510631, China
 Download: PDF(104 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

For a finite group G, it is denoted by N(G) the set of conjugacy class sizes of G. In 1980s, J. G. Thompson posed the following conjecture: if L is a finite nonabelian simple group, G is a finite group with trivial center, and N(G) = N(L), then L and G are isomorphic. In this paper, it is proved that Thompson’s conjecture is true for the alternating group A22 with connected prime graph.

Keywords Finite group      conjugacy class size      simple group      prime graph of a group     
Corresponding Author(s): XU Mingchun,Email:xumch@scnu.edu.cn   
Issue Date: 01 October 2013
 Cite this article:   
Mingchun XU. Thompson’s conjecture for alternating group of degree 22[J]. Front Math Chin, 0, (): 1227-1236.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-013-0320-z
https://academic.hep.com.cn/fmc/EN/Y0/V/I/1227
1 Bi J X. A quantitative property of the length of the conjugacy classes of finite simple groups. J Liaoning Univ , 2008, 35: 5-6 (in Chinese)
2 Chen G Y. On Thompson’s conjecture. J Algebra , 1996, 185: 185-193
3 Chen G Y. Further reflections on Thompson’s conjecture. J Algebra , 1999, 218: 276-285
doi: 10.1006/jabr.1998.7839
4 Chillag D, Herzog M. On the length of the conjugacy classes of finite groups. J Algebra , 1990, 131: 110-125
doi: 10.1016/0021-8693(90)90168-N
5 Conway J H, Curtis R T, Norton S P, Parker R A, WilsonR A. An Atlas of Finite Groups. Oxford: Clarendon Press, 1985
6 James G D, Kerber A. The Representation Theory of Symmetric Group. London: Addison Wesley Publishing Company, Inc, 1981, 8-15
7 Khosravi A, Khosravi B. A new characterization of some alternating and symmetric groups. IJMMS , 2003, 45: 2863-2872
8 Khukhro E I, Mazurov V D. Unsolved Problems in Group Theory: the Kourovka Notebook. 16th ed . Novosibirsk: Sobolev Institute of Mathematics, 2006
9 Kondrat’ev A S. On prime graph components of finite groups. Mat Sb , 1989, 180: 787-797
10 The GAP Group: GAP-Groups, Algorithms, and Programming. Version 4.4.10, 2007, http://www.gap-system.org
11 Vasil’ev A V. On Thompson’s conjecture. Siberian Electronic Mathematical Reports , 2009, 6: 457-464
12 Williams J S. Prime graph components of finite groups. J Algebra , 1981, 69: 489-513
doi: 10.1016/0021-8693(81)90218-0
13 Zavarnitsine A V. Finite simple groups with narrow prime spectrum. Siberian Electronic Mathematical Reports , 2009, 6: 1-12
[1] Guohua QIAN. Character codegrees in finite groups[J]. Front. Math. China, 2023, 18(1): 15-32.
[2] Jiaxin SHEN, Shenglin ZHOU. Flag-transitive 2-υ,5,λ designs with sporadic socle[J]. Front. Math. China, 2020, 15(6): 1201-1210.
[3] Huaquan WEI, Qiao DAI, Hualian ZHANG, Yubo LV, Liying YANG. On c#-normal subgroups in finite groups[J]. Front. Math. China, 2018, 13(5): 1169-1178.
[4] Xia YIN, Nanying YANG. Finite groups with permutable Hall subgroups[J]. Front. Math. China, 2017, 12(5): 1265-1275.
[5] Zhenfeng WU,Wenbin GUO,Baojun LI. On an open problem of Guo-Skiba[J]. Front. Math. China, 2016, 11(6): 1603-1612.
[6] B. AKBARI,A. R. MOGHADDAMFAR. OD-Characterization of certain four dimensional linear groups with related results concerning degree patterns[J]. Front. Math. China, 2015, 10(1): 1-31.
[7] Hong SHEN, Hongping CAO, Guiyun CHEN. Characterization of automorphism groups of sporadic simple groups[J]. Front Math Chin, 2012, 7(3): 513-519.
[8] Jing CHEN, Weijun LIU. Nonexistence of block-transitive 6-designs[J]. Front Math Chin, 2011, 6(5): 835-845.
[9] Xiuxian FENG, Wenbin GUO. On ?h-normal subgroups of finite groups[J]. Front Math Chin, 2010, 5(4): 653-664.
[10] Qinhui JIANG, Changguo SHAO. Finite groups with 24 elements of maximal order[J]. Front Math Chin, 2010, 5(4): 665-678.
[11] A. A. HOSEINI, A. R. MOGHADDAMFAR, . Recognizing alternating groups A p +3 for certain primes p by their orders and degree patterns[J]. Front. Math. China, 2010, 5(3): 541-553.
[12] Wenbin GUO, Fengyan XIE, Yi LU, . On g-s-supplemented subgroups of finite groups[J]. Front. Math. China, 2010, 5(2): 287-295.
[13] Lingli WANG, . Characterization of finite simple group D n (2)[J]. Front. Math. China, 2010, 5(1): 179-190.
[14] A. R. MOGHADDAMFAR, A. R. ZOKAYI, . OD-Characterization of alternating and symmetric groups of degrees 16 and 22[J]. Front. Math. China, 2009, 4(4): 669-680.
[15] SHAO Changguo, SHI Wujie, JIANG Qinhui. Characterization of simple -groups[J]. Front. Math. China, 2008, 3(3): 355-370.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed