Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2014, Vol. 9 Issue (3) : 659-698    https://doi.org/10.1007/s11464-013-0327-5
RESEARCH ARTICLE
Numerical comparison of three stochastic methods for nonlinear PN junction problems
Wenqi YAO1,Tiao LU1,2,*()
1. School of Mathematical Sciences, Peking University, Beijing 100871, China
2. HEDPS, CAPT and LMAM, Peking University, Beijing 100871, China
 Download: PDF(1338 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We apply the Monte Carlo, stochastic Galerkin, and stochastic collocation methods to solving the drift-diffusion equations coupled with the Poisson equation arising in semiconductor devices with random rough surfaces. Instead of dividing the rough surface into slices, we use stochastic mapping to transform the original deterministic equations in a random domain into stochastic equations in the corresponding deterministic domain. A finite element discretization with the help of AFEPack is applied to the physical space, and the equations obtained are solved by the approximate Newton iterative method. Comparison of the three stochastic methods through numerical experiment on different PN junctions are given. The numerical results show that, for such a complicated nonlinear problem, the stochastic Galerkin method has no obvious advantages on efficiency except accuracy over the other two methods, and the stochastic collocation method combines the accuracy of the stochastic Galerkin method and the easy implementation of the Monte Carlo method.

Keywords Stochastic partial differential equation      stochastic Galerkin method      stochastic collocation method      Monte Carlo method     
Corresponding Author(s): Tiao LU   
Issue Date: 24 June 2014
 Cite this article:   
Wenqi YAO,Tiao LU. Numerical comparison of three stochastic methods for nonlinear PN junction problems[J]. Front. Math. China, 2014, 9(3): 659-698.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-013-0327-5
https://academic.hep.com.cn/fmc/EN/Y2014/V9/I3/659
1 AskeyR, WilsonJ. Some Basic Hypergeometric Orthogonal Polynomials that Generalize Jacobi Polynomials. Mem Amer Math Soc, No 319. Providence: Amer Math Soc, 1985
2 BabuškaI, TemponeR, ZourarisG E. Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J Numer Anal, 2004, 42(2): 800-825
doi: 10.1137/S0036142902418680
3 Bäck,J, NobileF, TamelliniL, TemponeR. Stochastic spectral Galerkin and collocation methods for PDEs with random coefficients: a numerical comparison. In: Proceedings of the International Conference on Spectral and High Order Methods (ICOSAHOM 09). Berlin: Springer-Verlag, 2010
4 BankR E, RoseD J. Global approximate Newton methods. Numer Math, 1981, 37: 279-295
doi: 10.1007/BF01398257
5 BankR E, RoseD J, FichtnerW. Numerical methods for semiconductor device simulation. SIAM J Sci Stat Comput, 1983, 4: 416-435
doi: 10.1137/0904032
6 BejanA. Shape and Structure, from Engineering to Nature. New York: Cambridge Univ Press, 2000
7 BürglerJ F, BankR E, FichtnerW, SmithR K. A new discretization for the semiconductor current continuity equations. IEEE Trans Comput-Aided Design Integrat Circuits Sys, 1989, 8: 479-489
doi: 10.1109/43.24876
8 BürglerJ F, ConghranW M, FichtnerJr W. An adaptive grid refinement strategy for the drift-diffusion equations. IEEE Trans Comput-Aided Design Integrat Circuits Sys, 1991, 10: 1251-1258
doi: 10.1109/43.88921
9 DebM K, BabuškaI M, OdenJ T. Solution of stochastic partial differential equations using Galerkin finite element techniques. Comput Meth Appl Mech Engrg, 2001, 190: 6359-6372
doi: 10.1016/S0045-7825(01)00237-7
10 ElmanH C, MillerC W, PhippsE T, TuminaroR S. Assessment of collocation and Galerkin approaches to linear diffusion equations with random data. Int J Uncertainty Quant, 2011, 1(1): 19-33
doi: 10.1615/Int.J.UncertaintyQuantification.v1.i1.20
11 FishmanG. Monte Carlo: Concepts, Algorithms, and Applications. New York: Springer-Verlag, 1996
doi: 10.1007/978-1-4757-2553-7
12 GanapathysubramanianB, ZabarasN. Sparse grid collocation methods for stochastic natural convection problems. J Comput Phys, 2007, 225(1): 652-685
doi: 10.1016/j.jcp.2006.12.014
13 GhanemR G, SpanosP. Stochastic Finite Elements: a Spectral Approach. New York: Springer, 1991
doi: 10.1007/978-1-4612-3094-6
14 LiR. On multi-mesh h-adaptive methods. J Sci Comput, 2005, 24(3): 321-341
doi: 10.1007/s10915-004-4793-5
15 LoèveM. Probability Theory. 4th ed. Berlin: Springer-Verlag, 1977
16 NovakE, RitterK. High dimensional integration of smooth functions over cubes. Numer Math, 1996, 75: 79-97
doi: 10.1007/s002110050231
17 NovakE, RitterK. Simple cubature formulas with high polynomial exactness. Constructive Approx, 1999, 15: 499-522
doi: 10.1007/s003659900119
18 SmolyakS A. Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl Akad Nauk SSSR, 1963, 148: 1042-1045(in Russian); Soviet Math Dokl, 1963, 4: 240-243
19 TaurY, NingH. Fundamentals of Modern VLSI Devices. 2nd ed. Cambridge: Cambridge Univ Press, 2009
20 Van TreesH L. Detection, Estimation, and Modulation Theory, Part I. New York: Wiley, 1968
21 WasilkowskiG, WozniakowskiH. Explicit cost bounds of algorithms for multivariate tensor product problems. J Complexity, 1995, 11: 1-56
doi: 10.1006/jcom.1995.1001
22 WienerN. The homogeneous chaos. Amer J Math, 1938, 60: 897-936
doi: 10.2307/2371268
23 XiuD, HesthavenJ. High-order collocation methods for differential equations with random inputs. SIAM J Sci Comput, 2005, 27: 1118-1139
doi: 10.1137/040615201
24 XiuD, KarniadakisG E. The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput, 2002, 24(2): 619-644
doi: 10.1137/S1064827501387826
25 XiuD, KarniadakisG E. Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos. Comput Methods Appl Math Engrg, 2002, 191: 4927-4948
doi: 10.1016/S0045-7825(02)00421-8
26 XiuD, KarniadakisG E. Modeling uncertainty in flow simulations via generalized polynomial chaos. J Comput Phys, 2003, 187: 137-167
doi: 10.1016/S0021-9991(03)00092-5
27 XiuD, TartakovskyD M. Numerical methods for differential equations in random domain. SIAM J Sci Comput, 2006, 28: 1167-1185
doi: 10.1137/040613160
28 YuS, ZhaoY, ZengL, DuG, KangJ, HanR, LiuX. Impact of line-edge roughness on double-gate Schottky-barrier filed-effect transistors. IEEE Trans Electron Devices, 2009, 56(6): 1211-1219
doi: 10.1109/TED.2009.2017644
[1] Shaoqin ZHANG. Shift Harnack inequality and integration by parts formula for semilinear stochastic partial differential equations[J]. Front. Math. China, 2016, 11(2): 461-496.
[2] Zhi LI,Jiaowan LUO. Transportation inequalities for stochastic delay evolution equations driven by fractional Brownian motion[J]. Front. Math. China, 2015, 10(2): 303-321.
[3] Zhen-Qing CHEN,Wai-Tong(Louis) FAN. Scaling limits of interacting diffusions in domains[J]. Front. Math. China, 2014, 9(4): 717-736.
[4] Jinqiao DUAN. Stochastic modeling of unresolved scales in complex systems[J]. Front Math Chin, 2009, 4(3): 425-436.
[5] BO Lijun, WANG Yongjin, YAN Liqing. Higher-order stochastic partial differential equations with branching noises[J]. Front. Math. China, 2008, 3(1): 15-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed