Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2013, Vol. 8 Issue (6) : 1367-1376    https://doi.org/10.1007/s11464-013-0328-4
RESEARCH ARTICLE
Approximations and cotorsion pairs related to a tilting pair
Yihua LIAO1,2, Jianlong CHEN1()
1. Department of Mathematics, Southeast University, Nanjing 210096, China; 2. College of Mathematics and Information Science, Guangxi University, Nanning 530004, China
 Download: PDF(118 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The notion of a tilting pair over artin algebras was introduced by Miyashita in 2001. It is a useful tool in the tilting theory. Approximations and cotorsion pairs related to a fixed tilting pair were discussed. A contravariantly (covariantly) finite subcategory and a cotorsion pair associated with a fixed tilting pair were given in this paper.

Keywords Selforthogonal module      contravariantly (covariantly) finite subcategory      cotorsion pair      tilting pair     
Corresponding Author(s): CHEN Jianlong,Email:jlchen@seu.edu.cn   
Issue Date: 01 December 2013
 Cite this article:   
Yihua LIAO,Jianlong CHEN. Approximations and cotorsion pairs related to a tilting pair[J]. Front Math Chin, 2013, 8(6): 1367-1376.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-013-0328-4
https://academic.hep.com.cn/fmc/EN/Y2013/V8/I6/1367
1 Anderson F D, Fuller K R. Rings and Categories of Modules. 2nd ed. Berlin , New York: Springer-Verlag, 1992
doi: 10.1007/978-1-4612-4418-9
2 Araya T, Yoshino Y. Remark on a depth formula, a grade inequality, and a conjecture of Auslander. Comm Algebra , 1998, 26: 3793-3806
doi: 10.1080/00927879808826375
3 Auslander M, Reiten I. Applications of contravariantly finite subcategories. Adv Math , 1991, 86: 111-152
doi: 10.1016/0001-8708(91)90037-8
4 Auslander M, Smal? S O. Preprojective modules over artin algebras. J Algebra , 1980, 66: 61-122
doi: 10.1016/0021-8693(80)90113-1
5 Avramov L L, Buchweitz R O. Support varieties and cohomology over complete intersections. Invent Math , 2000, 142: 285-318
doi: 10.1007/s002220000090
6 Bazzoni S. A characterization of n-cotilting and n-tilting modules. J Algebra , 2004, 273: 359-372
doi: 10.1016/S0021-8693(03)00432-0
7 Enochs E E, Jenda O M G. Relative Homological Algebra. Berlin , New York: Walter de Gruyter, 2000
doi: 10.1515/9783110803662
8 Enochs E E, Oyonarte L. Covers, Envolopes, and Cotorsion Theories. New York: Nova Science Publishers, Inc, 2002
9 Garcia R J R. Covers and Envelopes in the Category of Complexes of Modules. London: Chapman & Hall/CRC, 1999
10 G?bel R, Trlifaj J. Approximations and Endomorphism Algebras of Modules. Berlin , New York: Walter de Gruyter, 2006
doi: 10.1515/9783110199727
11 Miyashita Y. Tilting modules associated with a series of idempotent ideals. J Algebra , 2001, 238: 485-501
doi: 10.1006/jabr.2000.8659
12 Reiten I. Tilting theory and homologically finite subcategories with applications to quasihereditary algebras. In: Handbook of Tilting Theory. London Math Soc Lect Note Ser, 332 . Cambridge: Cambridge Univ Press, 2007, 179-214
doi: 10.1017/CBO9780511735134.008
13 Sega L M. Vanishing of cohomology over Gorenstein rings of small codimension. Proc Amer Math Soc , 2002, 131: 2313-2323
doi: 10.1090/S0002-9939-02-06788-6
14 Trlifaj J. Infinite dimensional tilting modules and cotorsion pairs. In: Handbook of Tilting Theory. London Math Soc Lect Note Ser, 332 . Cambridge: Cambridge Univ Press, 2007: 279-322
doi: 10.1017/CBO9780511735134.011
15 Wei J Q, Xi C C. A characterization of the tilting pair. J Algebra , 2007, 317(1): 376-391
doi: 10.1016/j.jalgebra.2007.05.003
[1] Haiyan ZHU. Constructing cotorsion pairs over generalized path algebras[J]. Front. Math. China, 2016, 11(4): 1079-1096.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed