|
|
|
Approximations and cotorsion pairs related to a tilting pair |
Yihua LIAO1,2, Jianlong CHEN1( ) |
| 1. Department of Mathematics, Southeast University, Nanjing 210096, China; 2. College of Mathematics and Information Science, Guangxi University, Nanning 530004, China |
|
|
|
|
Abstract The notion of a tilting pair over artin algebras was introduced by Miyashita in 2001. It is a useful tool in the tilting theory. Approximations and cotorsion pairs related to a fixed tilting pair were discussed. A contravariantly (covariantly) finite subcategory and a cotorsion pair associated with a fixed tilting pair were given in this paper.
|
| Keywords
Selforthogonal module
contravariantly (covariantly) finite subcategory
cotorsion pair
tilting pair
|
|
Corresponding Author(s):
CHEN Jianlong,Email:jlchen@seu.edu.cn
|
|
Issue Date: 01 December 2013
|
|
| 1 |
Anderson F D, Fuller K R. Rings and Categories of Modules. 2nd ed. Berlin , New York: Springer-Verlag, 1992 doi: 10.1007/978-1-4612-4418-9
|
| 2 |
Araya T, Yoshino Y. Remark on a depth formula, a grade inequality, and a conjecture of Auslander. Comm Algebra , 1998, 26: 3793-3806 doi: 10.1080/00927879808826375
|
| 3 |
Auslander M, Reiten I. Applications of contravariantly finite subcategories. Adv Math , 1991, 86: 111-152 doi: 10.1016/0001-8708(91)90037-8
|
| 4 |
Auslander M, Smal? S O. Preprojective modules over artin algebras. J Algebra , 1980, 66: 61-122 doi: 10.1016/0021-8693(80)90113-1
|
| 5 |
Avramov L L, Buchweitz R O. Support varieties and cohomology over complete intersections. Invent Math , 2000, 142: 285-318 doi: 10.1007/s002220000090
|
| 6 |
Bazzoni S. A characterization of n-cotilting and n-tilting modules. J Algebra , 2004, 273: 359-372 doi: 10.1016/S0021-8693(03)00432-0
|
| 7 |
Enochs E E, Jenda O M G. Relative Homological Algebra. Berlin , New York: Walter de Gruyter, 2000 doi: 10.1515/9783110803662
|
| 8 |
Enochs E E, Oyonarte L. Covers, Envolopes, and Cotorsion Theories. New York: Nova Science Publishers, Inc, 2002
|
| 9 |
Garcia R J R. Covers and Envelopes in the Category of Complexes of Modules. London: Chapman & Hall/CRC, 1999
|
| 10 |
G?bel R, Trlifaj J. Approximations and Endomorphism Algebras of Modules. Berlin , New York: Walter de Gruyter, 2006 doi: 10.1515/9783110199727
|
| 11 |
Miyashita Y. Tilting modules associated with a series of idempotent ideals. J Algebra , 2001, 238: 485-501 doi: 10.1006/jabr.2000.8659
|
| 12 |
Reiten I. Tilting theory and homologically finite subcategories with applications to quasihereditary algebras. In: Handbook of Tilting Theory. London Math Soc Lect Note Ser, 332 . Cambridge: Cambridge Univ Press, 2007, 179-214 doi: 10.1017/CBO9780511735134.008
|
| 13 |
Sega L M. Vanishing of cohomology over Gorenstein rings of small codimension. Proc Amer Math Soc , 2002, 131: 2313-2323 doi: 10.1090/S0002-9939-02-06788-6
|
| 14 |
Trlifaj J. Infinite dimensional tilting modules and cotorsion pairs. In: Handbook of Tilting Theory. London Math Soc Lect Note Ser, 332 . Cambridge: Cambridge Univ Press, 2007: 279-322 doi: 10.1017/CBO9780511735134.011
|
| 15 |
Wei J Q, Xi C C. A characterization of the tilting pair. J Algebra , 2007, 317(1): 376-391 doi: 10.1016/j.jalgebra.2007.05.003
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|