Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2014, Vol. 9 Issue (3) : 641-657    https://doi.org/10.1007/s11464-013-0334-6
RESEARCH ARTICLE
Diophantine inequality involving binary forms
Boqing XUE()
Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China
 Download: PDF(165 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Let r= 2d-1 + 1. We investigate the diophantine inequality|i=1rλiΦi(xi,yi)+η||<(max?1ir{|xi|,|yi|})-σwhere Φi(x, y) ∈Z[x, y] (1≤ir) are nondegenerate forms of degree d= 3 or 4.

Keywords Diophantine inequality      binary form     
Corresponding Author(s): Boqing XUE   
Issue Date: 24 June 2014
 Cite this article:   
Boqing XUE. Diophantine inequality involving binary forms[J]. Front. Math. China, 2014, 9(3): 641-657.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-013-0334-6
https://academic.hep.com.cn/fmc/EN/Y2014/V9/I3/641
1 BakerR C. Cubic diophantine inequalities. Mathematika, 1982, 29: 83-92
doi: 10.1112/S0025579300012183
2 BakerR C, BrüdernJ, WooleyT D. Cubic diophantine inequalities. Mathematika, 1995, 42: 264-277
doi: 10.1112/S0025579300014583
3 BrowningT D. Quantitative Arithmetic of Projective Varieties. Progress in Math, Vol 277. Basel: Birkhäuser, 2009
doi: 10.1007/978-3-0346-0129-0
4 BrowningT D, DietmannR, ElliottP D T A. Least zero of a cubic form. Math Ann, 2012, 352: 745-778
doi: 10.1007/s00208-011-0651-6
5 BrüdernJ. Cubic diophantine inequalities. Mathematika, 1988, 35: 51-58
doi: 10.1112/S0025579300006264
6 BrüdernJ. Cubic diophantine inequalities (II). J Lond Math Soc, 1996, 53(2): 1-18
doi: 10.1112/jlms/53.1.1
7 BrüdernJ. Cubic diophantine inequalities (III). Periodica Mathematica Hungarica, 2001, 42(1-2): 211-226
doi: 10.1023/A:1015269212362
8 CookR J. The value of additive forms at prime arguments. J Théor Nombres Bordeaux, 2001, 13: 77-91
doi: 10.5802/jtnb.305
9 DavenportH. Analytic Methods for Diophantine Equations and Diophantine Inequalities. 2nd ed. Cambridge: Cambridge University Press, 2005
doi: 10.1017/CBO9780511542893
10 DavenportH, HeilbronnH. On indefinite quadratic forms in five variables. J Lond Math Soc, 1946, 21: 185-193
doi: 10.1112/jlms/s1-21.3.185
11 HarveyM P. Cubic diophantine inequalities involving a norm form. Int J Number Theory, 2011, 7(8): 2219-2235
doi: 10.1142/S1793042111005052
12 TitchmarshE C. The Theory of the Riemann Zeta-Function. 2nd ed. Oxford: Oxford University Press, 1986
13 WatsonG L. On indefinite quadratic forms in five variables. Proc Lond Math Soc, 1953, 3(3): 170-181
doi: 10.1112/plms/s3-3.1.170
14 WooleyT D. On Weyl’s inequality, Hua’s lemma and exponential sums over binary forms. Duke Math J, 1999, 100: 373-423
doi: 10.1215/S0012-7094-99-10014-7
15 WooleyT D. Vinogradov’s mean value theorem via efficient congruencing. Ann Math, 2012, 175: 1575-1627
doi: 10.4007/annals.2012.175.3.12
[1] Gaiyun GAO, Zhixin LIU. Results of Diophantine approximation by unlike powers of primes[J]. Front. Math. China, 2018, 13(4): 797-808.
[2] Quanwu MU. Diophantine inequality involving binary forms[J]. Front. Math. China, 2017, 12(6): 1457-1468.
[3] Yuchao WANG. Values of binary linear forms at prime arguments[J]. Front. Math. China, 2015, 10(6): 1449-1459.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed