|
|
|
Diophantine inequality involving binary forms |
Boqing XUE( ) |
| Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China |
|
|
|
|
Abstract Let r= 2d-1 + 1. We investigate the diophantine inequality|∑i=1rλiΦi(xi,yi)+η||<(max?1≤i≤r{|xi|,|yi|})-σwhere Φi(x, y) ∈Z[x, y] (1≤i≤r) are nondegenerate forms of degree d= 3 or 4.
|
| Keywords
Diophantine inequality
binary form
|
|
Corresponding Author(s):
Boqing XUE
|
|
Issue Date: 24 June 2014
|
|
| 1 |
BakerR C. Cubic diophantine inequalities. Mathematika, 1982, 29: 83-92 doi: 10.1112/S0025579300012183
|
| 2 |
BakerR C, BrüdernJ, WooleyT D. Cubic diophantine inequalities. Mathematika, 1995, 42: 264-277 doi: 10.1112/S0025579300014583
|
| 3 |
BrowningT D. Quantitative Arithmetic of Projective Varieties. Progress in Math, Vol 277. Basel: Birkhäuser, 2009 doi: 10.1007/978-3-0346-0129-0
|
| 4 |
BrowningT D, DietmannR, ElliottP D T A. Least zero of a cubic form. Math Ann, 2012, 352: 745-778 doi: 10.1007/s00208-011-0651-6
|
| 5 |
BrüdernJ. Cubic diophantine inequalities. Mathematika, 1988, 35: 51-58 doi: 10.1112/S0025579300006264
|
| 6 |
BrüdernJ. Cubic diophantine inequalities (II). J Lond Math Soc, 1996, 53(2): 1-18 doi: 10.1112/jlms/53.1.1
|
| 7 |
BrüdernJ. Cubic diophantine inequalities (III). Periodica Mathematica Hungarica, 2001, 42(1-2): 211-226 doi: 10.1023/A:1015269212362
|
| 8 |
CookR J. The value of additive forms at prime arguments. J Théor Nombres Bordeaux, 2001, 13: 77-91 doi: 10.5802/jtnb.305
|
| 9 |
DavenportH. Analytic Methods for Diophantine Equations and Diophantine Inequalities. 2nd ed. Cambridge: Cambridge University Press, 2005 doi: 10.1017/CBO9780511542893
|
| 10 |
DavenportH, HeilbronnH. On indefinite quadratic forms in five variables. J Lond Math Soc, 1946, 21: 185-193 doi: 10.1112/jlms/s1-21.3.185
|
| 11 |
HarveyM P. Cubic diophantine inequalities involving a norm form. Int J Number Theory, 2011, 7(8): 2219-2235 doi: 10.1142/S1793042111005052
|
| 12 |
TitchmarshE C. The Theory of the Riemann Zeta-Function. 2nd ed. Oxford: Oxford University Press, 1986
|
| 13 |
WatsonG L. On indefinite quadratic forms in five variables. Proc Lond Math Soc, 1953, 3(3): 170-181 doi: 10.1112/plms/s3-3.1.170
|
| 14 |
WooleyT D. On Weyl’s inequality, Hua’s lemma and exponential sums over binary forms. Duke Math J, 1999, 100: 373-423 doi: 10.1215/S0012-7094-99-10014-7
|
| 15 |
WooleyT D. Vinogradov’s mean value theorem via efficient congruencing. Ann Math, 2012, 175: 1575-1627 doi: 10.4007/annals.2012.175.3.12
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|