Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2014, Vol. 9 Issue (1) : 93-99    https://doi.org/10.1007/s11464-013-0349-z
RESEARCH ARTICLE
Normal projection: deterministic and probabilistic algorithms
Dongmei LI1, Jinwang LIU1, Weijun LIU2()
1. Department of Mathematics and Computing Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; 2. Department of Mathematics and Statistics, Central South University, Changsha 410083, China
 Download: PDF(85 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We consider the following problem: for a collection of points in an n-dimensional space, find a linear projection mapping the points to the ground field such that different points are mapped to different values. Such projections are called normal and are useful for making algebraic varieties into normal positions. The points may be given explicitly or implicitly and the coefficients of the projection come from a subset S of the ground field. If the subset S is small, this problem may be hard. This paper deals with relatively large S, a deterministic algorithm is given when the points are given explicitly, and a lower bound for success probability is given for a probabilistic algorithm from in the literature.

Keywords Normal projection      primary decomposition of ideal      deterministic algorithm     
Corresponding Author(s): LIU Weijun,Email:wjliu@csu.edu.cn   
Issue Date: 01 February 2014
 Cite this article:   
Dongmei LI,Jinwang LIU,Weijun LIU. Normal projection: deterministic and probabilistic algorithms[J]. Front Math Chin, 2014, 9(1): 93-99.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-013-0349-z
https://academic.hep.com.cn/fmc/EN/Y2014/V9/I1/93
1 Adams W, Loustaunau P. An Introduction to Gr?bner Bases. Graduate Studies in Mathematics 3. Providence: Amer Math Soc, 1994
2 Becker T, Weispfenning V. Gr?bner Bases—A Computational Approach to Commutative Algebra. Graduate Texts in Mathematics , Vol 141. New York: Springer, 1993
3 Buchberger B. Gr?bner bases: An algorithmic method in polynomial ideal theory. In: Bose N K, ed. Recent Trends in Multidimensional Systems Theory . Dordrecht: Reidel D, 1985, Chapter 6
4 Decker W, Greuel G-M, Pfister G. Primary decomposition: algorithms and comparisons. In: Matzat B H, Greuel G-M, Hiss G, eds. Algorithmic Algebra and Number Theory (Heidelberg, 1997) . Berlin: Springer, 1999, 187-220
doi: 10.1007/978-3-642-59932-3_10
5 Gao S. Factoring multivariate polynomials via partial differential equations. Math Comp , 2003, 72: 801-822
doi: 10.1090/S0025-5718-02-01428-X
6 Gao S, Wan D, Wang M. Primary decomposition of zero-dimensional ideals over finite fields. Math of Comp , 2009, 78: 509-521
doi: 10.1090/S0025-5718-08-02115-7
7 Garey M R, Johnson D S. Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences . New York: W H Freeman, 1979
8 Grabe H-G. Minimal primary decomposition and factorized Gr?bner bases. Appl Algebra Engrg Comm Comput , 1997, 8: 265-278
doi: 10.1007/s002000050064
9 Greuel G-M, Pfister G. A Singular Introduction to Commutative Algebra. New York: Spinger-Verlag, 2002
doi: 10.1007/978-3-662-04963-1
10 Liu J, Li D. The λ-Gr?bner bases under polynomial composition. J Syst Sci Complex , 2007, 20: 610-613
doi: 10.1007/s11424-007-9059-5
11 Liu J, Wang M. Homogeneous Gr?bner bases under composition. J Algebra , 2006, 303: 668-676
doi: 10.1016/j.jalgebra.2005.08.037
12 Liu J, Wang M. Further results on homogeneous Gr?bner bases under composition. J Algebra , 2007, 315: 134-143
doi: 10.1016/j.jalgebra.2007.05.023
13 Monico C. Computing the primary decomposition of zero-dimensional ideals. J Symbolic Comput , 2002, 34: 451-459
doi: 10.1006/jsco.2002.0571
14 Sausse A. A new approach to primary decomposition. J Symbolic Comput , 2001, 31: 243-257
doi: 10.1006/jsco.2000.1017
15 Schwartz J T. Fast probabilistic algorithms for verification of polynomial identities. J ACM , 1980, 27: 701-717
doi: 10.1145/322217.322225
16 Steel A. Conquering inseparability:primary decomposition and multivariate factorization over algebraic function fields of positive characteristic. J Symbolic Comput , 2005, 40: 1053-1075
doi: 10.1016/j.jsc.2005.03.002
17 Takayama N. An approach to the zero recognition problem by Buchberger algorithm. J Symbolic Comput , 1992, 14: 265-282
doi: 10.1016/0747-7171(92)90039-7
18 Wang D. Decomposing algebraic varieties, Automated deduction in geometry (Beijing, 1998). In: Lecture Notes Comput Sci , Vol 1669. Berlin: Springer, 1999, 180-206
19 Zippel R. Probabilistic algorithms for sparse polynomials. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation . 1979, 216-226
doi: 10.1007/3-540-09519-5_73
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed