Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2015, Vol. 10 Issue (1) : 33-51    https://doi.org/10.1007/s11464-014-0370-x
RESEARCH ARTICLE
Uniqueness of weak solutions for fractional Navier-Stokes equations
Yong DING1,2,Xiaochun SUN2,3,*()
1. Laboratory of Mathematics and Complex Systems (BNU)Ministry of EducationChinaBeijing 100875China
2. School of Mathematical SciencesBeijing Normal UniversityBeijing 100875China
3. College of Mathematics and StatisticsNorthwest Normal UniversityLanzhou 730070China
 Download: PDF(177 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We prove that if u is a weak solution of the d dimensional fractional Navier-Stokes equations for some initial data u0and if u belongs to path space p=Lq(0,T;Bp,r)or p=L1(0,T;B,r), then u is unique in the class of weak solutions when α>1. The main tools are Bony decomposition and Fourier localization technique. The results generalize and improve many recent known results.

Keywords Strichartz estimateelliptic Navier-Stokes equationhigher-order elliptic operatorpotential     
Corresponding Author(s): Xiaochun SUN   
Issue Date: 30 December 2014
 Cite this article:   
Yong DING,Xiaochun SUN. Uniqueness of weak solutions for fractional Navier-Stokes equations[J]. Front. Math. China, 2015, 10(1): 33-51.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-014-0370-x
https://academic.hep.com.cn/fmc/EN/Y2015/V10/I1/33
1 Beir?o da Veiga H. A new regularity class for the Navier-Stokes equations in ?n. Chin Ann Math Ser B, 1995, 4: 407-412
2 Bony J M. Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann Sci école Norm Sup, 1981, 2(4): 209-246
3 Cannone M, Karch G. Incompressible Navier-Stokes equations in abstract Banach spaces. Sūrikaisekikenkyūsho Kōkyūroku, 2001, 1234: 27-41
4 Chemin J Y. Perfect Incompressible Fluids. New York: Oxford University Press, 19985.
5 Chen Q, Miao C, Zhang Z. On the uniqueness of weak solutions for the 3D Navier-Stokes equations. Ann Inst H Poincaré Anal Non Linéaire, 2009, 6: 2165-2180
6 Chen Q, Zhang Z. Space-time estimates in the Besov spaces and the Navier-Stokes equations. Methods Appl Anal, 2006, 1: 107-122
7 Cheskidov A, Shvydkoy R. On the regularity of weak solutions of the 3d Navier-Stokes equations in B∞,∞-1. arXiv: 0708.3067v2
8 Constantin P, Wu J. Behavior of solutions of 2D quasi-geostrophic equations. SIAM J Math Anal, 1999, 5: 937-948
https://doi.org/10.1137/S0036141098337333
9 Gallagher I, Planchon F. On global infinite energy solutions to the Navier-Stokes equations in two dimensions. Arch Ration Mech Anal, 2002, 4: 307-337
https://doi.org/10.1007/s002050100175
10 Germain P. Multipliers, paramultipliers, and weak-strong uniqueness for the Navier-Stokes equations. J Differential Equations, 2006, 2: 373-428
https://doi.org/10.1016/j.jde.2005.10.007
11 Giga Y. Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system. J Differential Equations, 1986, 2: 186-212
https://doi.org/10.1016/0022-0396(86)90096-3
12 Hajaiej H, Molinet L, Ozawa T, Wang B. Necessary and sufficient conditions for the fractional Gagliardo-Nirenberg inequalities and applications to Navier-Stokes and generalized boson equations. arXiv: 1004.4287
13 Iskauriaza L, Ser?gin G, Shverak V. L3,∞-solutions of Navier-Stokes equations and backward uniqueness. Uspekhi Mat Nauk, 2003, 2: 3-44
14 Kozono H, Ogawa T, Taniuchi Y. The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations. Math Z, 2002, 2: 251-278
https://doi.org/10.1007/s002090100332
15 Kozono H, Shimada Y. Bilinear estimates in homogeneous Triebel-Lizorkin spaces and the Navier-Stokes equations. Math Nachr, 2004, 276: 63-74
https://doi.org/10.1002/mana.200310213
16 Kozono H, Sohr H. Remark on uniqueness of weak solutions to the Navier-Stokes equations. Analysis, 1996, 3: 255-271
17 Kozono H, Taniuchi Y. Limiting case of the Sobolev inequality in BMO, with application to the Euler equations. Comm Math Phys, 2000, 1: 191-200
https://doi.org/10.1007/s002200000267
18 Ladyzhenskaya O A. The Mathematical Theory of Viscous Incompressible Flow. New York: Gordon and Breach, 1969
19 Leray J. Sur le mouvement d’un liquids visqeux emplissant l’espace. Acta Math, 1934, 63: 193-248
https://doi.org/10.1007/BF02547354
20 Lions J L. Quelques résultats d’existence dans des équations aux dérivées partielles non linéaires. Bull Soc Math France, 1959, 87: 245-273
21 Lions J L. Sur certaines équations paraboliques non linéaires. Bull Soc Math France, 1965, 93: 155-175
22 Lions J L. Quelques méthodes de résolution des problèmes aux limites non linéaires. Paris: Dunod, Gauthier-Villars, 1969
23 Prodi G. Un teorema di unicità per le equazioni di Navier-Stokes. Ann Mat Pura Appl, 1959, 48(4): 173-182
https://doi.org/10.1007/BF02410664
24 Ribaud F. A remark on the uniqueness problem for the weak solutions of Navier-Stokes equations. Ann Fac Sci Toulouse Math, 2002, 2(6): 225-238
https://doi.org/10.5802/afst.1024
25 Serrin J. The Initial Value Problem for the Navier-Stokes Equations. Madison: Univ of Wisconsin Press, 1963, 69-98
26 Stein E. Singular Integrals and Differentiability Properties of Functions. Princeton: Princeton University Press, 1970
27 Triebel H. Theory of Function Spaces. Monographs in Mathematics. Basel: Birkh?user, 1983
https://doi.org/10.1007/978-3-0346-0416-1
28 Wu H, Fan J. Weak-strong uniqueness for the generalized Navier-Stokes equations. Appl Math Lett, 2012, 3: 423-428
https://doi.org/10.1016/j.aml.2011.09.028
29 Wu J. Generalized MHD equations. J Differential Equations, 2003, 2: 284-312
https://doi.org/10.1016/j.jde.2003.07.007
30 Wu J. The generalized incompressible Navier-Stokes equations in Besov spaces. Dyn Partial Diff Equ, 2004, 4: 381-400
https://doi.org/10.4310/DPDE.2004.v1.n4.a2
31 Wu J. Lower bounds for an integral involving fractional Laplacians and the generalized Navier-Stokes equations in Besov spaces. Comm Math Phys, 2006, 3: 803-831
https://doi.org/10.1007/s00220-005-1483-6
32 Young J P. Fractional Gagliardo-Nirenberg inequality. J Chungcheong Math Soc, 2011, 24: 583-586
33 Zhou Y. A new regularity criterion for weak solutions to the Navier-Stokes equations. J Math Pures Appl, 2005, 11(9): 1496-1514
https://doi.org/10.1016/j.matpur.2005.07.003
34 Zhou Y. Regularity criteria for the generalized viscous MHD equations. Ann Inst H Poincaré Anal Non Linéaire, 2007, 3: 491-505
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed