| 1 |
Beir?o da Veiga H. A new regularity class for the Navier-Stokes equations in ?n. Chin Ann Math Ser B, 1995, 4: 407-412
|
| 2 |
Bony J M. Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann Sci école Norm Sup, 1981, 2(4): 209-246
|
| 3 |
Cannone M, Karch G. Incompressible Navier-Stokes equations in abstract Banach spaces. Sūrikaisekikenkyūsho Kōkyūroku, 2001, 1234: 27-41
|
| 4 |
Chemin J Y. Perfect Incompressible Fluids. New York: Oxford University Press, 19985.
|
| 5 |
Chen Q, Miao C, Zhang Z. On the uniqueness of weak solutions for the 3D Navier-Stokes equations. Ann Inst H Poincaré Anal Non Linéaire, 2009, 6: 2165-2180
|
| 6 |
Chen Q, Zhang Z. Space-time estimates in the Besov spaces and the Navier-Stokes equations. Methods Appl Anal, 2006, 1: 107-122
|
| 7 |
Cheskidov A, Shvydkoy R. On the regularity of weak solutions of the 3d Navier-Stokes equations in B∞,∞-1. arXiv: 0708.3067v2
|
| 8 |
Constantin P, Wu J. Behavior of solutions of 2D quasi-geostrophic equations. SIAM J Math Anal, 1999, 5: 937-948
https://doi.org/10.1137/S0036141098337333
|
| 9 |
Gallagher I, Planchon F. On global infinite energy solutions to the Navier-Stokes equations in two dimensions. Arch Ration Mech Anal, 2002, 4: 307-337
https://doi.org/10.1007/s002050100175
|
| 10 |
Germain P. Multipliers, paramultipliers, and weak-strong uniqueness for the Navier-Stokes equations. J Differential Equations, 2006, 2: 373-428
https://doi.org/10.1016/j.jde.2005.10.007
|
| 11 |
Giga Y. Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system. J Differential Equations, 1986, 2: 186-212
https://doi.org/10.1016/0022-0396(86)90096-3
|
| 12 |
Hajaiej H, Molinet L, Ozawa T, Wang B. Necessary and sufficient conditions for the fractional Gagliardo-Nirenberg inequalities and applications to Navier-Stokes and generalized boson equations. arXiv: 1004.4287
|
| 13 |
Iskauriaza L, Ser?gin G, Shverak V. L3,∞-solutions of Navier-Stokes equations and backward uniqueness. Uspekhi Mat Nauk, 2003, 2: 3-44
|
| 14 |
Kozono H, Ogawa T, Taniuchi Y. The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations. Math Z, 2002, 2: 251-278
https://doi.org/10.1007/s002090100332
|
| 15 |
Kozono H, Shimada Y. Bilinear estimates in homogeneous Triebel-Lizorkin spaces and the Navier-Stokes equations. Math Nachr, 2004, 276: 63-74
https://doi.org/10.1002/mana.200310213
|
| 16 |
Kozono H, Sohr H. Remark on uniqueness of weak solutions to the Navier-Stokes equations. Analysis, 1996, 3: 255-271
|
| 17 |
Kozono H, Taniuchi Y. Limiting case of the Sobolev inequality in BMO, with application to the Euler equations. Comm Math Phys, 2000, 1: 191-200
https://doi.org/10.1007/s002200000267
|
| 18 |
Ladyzhenskaya O A. The Mathematical Theory of Viscous Incompressible Flow. New York: Gordon and Breach, 1969
|
| 19 |
Leray J. Sur le mouvement d’un liquids visqeux emplissant l’espace. Acta Math, 1934, 63: 193-248
https://doi.org/10.1007/BF02547354
|
| 20 |
Lions J L. Quelques résultats d’existence dans des équations aux dérivées partielles non linéaires. Bull Soc Math France, 1959, 87: 245-273
|
| 21 |
Lions J L. Sur certaines équations paraboliques non linéaires. Bull Soc Math France, 1965, 93: 155-175
|
| 22 |
Lions J L. Quelques méthodes de résolution des problèmes aux limites non linéaires. Paris: Dunod, Gauthier-Villars, 1969
|
| 23 |
Prodi G. Un teorema di unicità per le equazioni di Navier-Stokes. Ann Mat Pura Appl, 1959, 48(4): 173-182
https://doi.org/10.1007/BF02410664
|
| 24 |
Ribaud F. A remark on the uniqueness problem for the weak solutions of Navier-Stokes equations. Ann Fac Sci Toulouse Math, 2002, 2(6): 225-238
https://doi.org/10.5802/afst.1024
|
| 25 |
Serrin J. The Initial Value Problem for the Navier-Stokes Equations. Madison: Univ of Wisconsin Press, 1963, 69-98
|
| 26 |
Stein E. Singular Integrals and Differentiability Properties of Functions. Princeton: Princeton University Press, 1970
|
| 27 |
Triebel H. Theory of Function Spaces. Monographs in Mathematics. Basel: Birkh?user, 1983
https://doi.org/10.1007/978-3-0346-0416-1
|
| 28 |
Wu H, Fan J. Weak-strong uniqueness for the generalized Navier-Stokes equations. Appl Math Lett, 2012, 3: 423-428
https://doi.org/10.1016/j.aml.2011.09.028
|
| 29 |
Wu J. Generalized MHD equations. J Differential Equations, 2003, 2: 284-312
https://doi.org/10.1016/j.jde.2003.07.007
|
| 30 |
Wu J. The generalized incompressible Navier-Stokes equations in Besov spaces. Dyn Partial Diff Equ, 2004, 4: 381-400
https://doi.org/10.4310/DPDE.2004.v1.n4.a2
|
| 31 |
Wu J. Lower bounds for an integral involving fractional Laplacians and the generalized Navier-Stokes equations in Besov spaces. Comm Math Phys, 2006, 3: 803-831
https://doi.org/10.1007/s00220-005-1483-6
|
| 32 |
Young J P. Fractional Gagliardo-Nirenberg inequality. J Chungcheong Math Soc, 2011, 24: 583-586
|
| 33 |
Zhou Y. A new regularity criterion for weak solutions to the Navier-Stokes equations. J Math Pures Appl, 2005, 11(9): 1496-1514
https://doi.org/10.1016/j.matpur.2005.07.003
|
| 34 |
Zhou Y. Regularity criteria for the generalized viscous MHD equations. Ann Inst H Poincaré Anal Non Linéaire, 2007, 3: 491-505
|