|
|
|
Asymptotic properties of supercritical branching processes in random environments |
Yingqiu LI1,Quansheng LIU1,2,*( ),Zhiqiang GAO3,Hesong WANG1 |
1. College of Mathematics and Computing Sciences, Changsha University of Science and Technology, Changsha 410004, China 2. Université de Bretagne-Sud, UMR 6205, LMBA, F-56000 Vannes, France 3. School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China |
|
|
|
|
Abstract We consider a supercritical branching process (Zn) in an independent and identically distributed random environment ξ, and present some recent results on the asymptotic properties of the limit variable W of the natural martingale Wn=Zn/E[Zn|ξ], the convergence rates of W-Wn(by considering the convergence in law with a suitable norming, the almost sure convergence, the convergence in LP, and the convergence in probability), and limit theorems (such as central limit theorems, moderate and large deviations principles) on (log Zn).
|
| Keywords
Branching process
random environment
large deviation
moderate deviation
central limit theorem
moment
weighted moment
convergence rate
|
|
Corresponding Author(s):
Quansheng LIU
|
|
Issue Date: 26 August 2014
|
|
| 1 |
Afanasyev V I, Geiger J, Kersting G, Vatutin V A. Criticality for branching processes in random environment. Ann Probab, 2005, 33(2): 645-673 doi: 10.1214/009117904000000928
|
| 2 |
Afanasyev V I, Geiger J, Kersting G, Vatutin V A. Functional limit theorems for strongly subcritical branching processes in random environment. Stochastic Process Appl, 2005, 115(10): 1658-1676 doi: 10.1016/j.spa.2005.05.001
|
| 3 |
Alsmeyer G, R?sler U. On the existence of ?-moments of the limit of a normalized supercritical Galton-Watson process. J Theoret Probab, 2004, 17(4): 905-928 doi: 10.1007/s10959-004-0582-1
|
| 4 |
Asmussen S. Convergence rates for branching processes. Ann Probab, 1976, 4: 139-146 doi: 10.1214/aop/1176996193
|
| 5 |
Athreya K B. Large deviation rates for branching processes—I. Single type case. Ann Appl Probab, 1994, 4: 779-790 doi: 10.1214/aoap/1177004971
|
| 6 |
Athreya K B, Karlin S. On branching processes in random environments I. Ann Math Statist, 1971, 42: 1499-1520 doi: 10.1214/aoms/1177693150
|
| 7 |
Athreya K B, Karlin S. On branching processes in random environments II. Ann Math Statist, 1971, 42: 1843-1858 doi: 10.1214/aoms/1177693051
|
| 8 |
Athreya K B, Ney P E. Branching Processes. Berlin: Springer, 1972 doi: 10.1007/978-3-642-65371-1
|
| 9 |
Bansaye V, Berestycki J. Large deviations for branching processes in random environment. Markov Process Related Fields, 2009, 15: 493-524
|
| 10 |
Bansaye V, B?inghoff C. Upper large deviations for branching processes in random environment with heavy tails. Preprint, 2010
|
| 11 |
Bingham N H, Doney R A. Asymptotic properties of supercritical branching processes I: The Galton-Watson processes. Adv Appl Probab, 1974, 6: 711-731 doi: 10.2307/1426188
|
| 12 |
B?inghoff C, Dyakonova E E, Kersting G, Vatutin V A. Branching processes in random environment which extinct at a given moment. Markov Process Related Fields, 2010, 16(2): 329-350
|
| 13 |
B?inghoff C, Kersting G. Upper large deviations of branching processes in a random environment-Offspring distributions with geometrically bounded tails. Stochastic Process Appl, 2010, 120: 2064-2077 doi: 10.1016/j.spa.2010.05.017
|
| 14 |
Dembo A, Zeitouni O. Large deviations Techniques and Applications. New York: Springer, 1998 doi: 10.1007/978-1-4612-5320-4
|
| 15 |
Fearn D H. Galton-Watson processes with generation dependence. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ California, Berkeley, Calif, 1970/1971), Vol IV: Biology and Health, Berkeley, Calif. Berkeley: Univ California Press, 1972, 159-172
|
| 16 |
Guivarc’h Y, Liu Q. Propriétés asymptotiques des processus de branchement en environnement aléatoire. C R Acad Sci Paris, Ser I, 2001, 332: 339-344
|
| 17 |
Hambly B. On the limit distribution of a supercritical branching process in a random environment. J Appl Probab, 1992, 29: 499-518 doi: 10.2307/3214889
|
| 18 |
Harris T E. The Theory of Branching Processes. Berlin: Springer, 1963 doi: 10.1007/978-3-642-51866-9
|
| 19 |
Heyde C C. A rate of convergence result for the super-critical Galton-Watson process. J Appl Probab, 1970, 7: 451-454 doi: 10.2307/3211980
|
| 20 |
Heyde C C. Some central limit analogues for super-critical Galton-Watson process. J Appl Probab, 1971, 8: 52-59 doi: 10.2307/3211837
|
| 21 |
Heyde C C, Brown B M. An invariance principle and some convergence rate results for branching processes. Z Wahrscheinlichkeitstheorie verw Geb, 1971, 20: 189-192
|
| 22 |
Huang C, Liu Q. Moments, moderate and large deviations for a branching process in a random environment. Stochastic Process Appl, 2012, 122: 522-545 doi: 10.1016/j.spa.2011.09.001
|
| 23 |
Huang C, Liu Q. Convergence rates for a supercritical branching process in a random environment. Markov Process Related Fields (to appear)
|
| 24 |
Huang C, Liu Q. Convergence in LP and its exponential rate for a branching process in a random environment. Preprint, 2014
|
| 25 |
Iksanov A. On some moments of the limit random variable for a normalized supercritical Galton-Watson process. In: Velle L R, ed. Focus on Probability Theory. New York: Nova Science Publishers, Inc, 2006, 151-158
|
| 26 |
Jagers P. Galton-Watson processes in varying environments. J Appl Probab, 1974, 11: 174-178 doi: 10.2307/3212594
|
| 27 |
Kozlov M V. On large deviations of branching processes in a random environment: geometric distribution of descendants. Discrete Math Appl, 2006, 16: 155-174 doi: 10.1515/156939206777344593
|
| 28 |
Li Y, Hu Y, Liu Q. Weighted moments for a supercritical branching process in a varying or random environment. Sci China Ser A: Math, 2011, 54(7): 1437-1444 doi: 10.1007/s11425-011-4220-y
|
| 29 |
Liang X, Liu Q. Weighted moments for the limit of a normalized supercritical Galton-Watson process. C R Math Acad Sci Paris, 2013, 351(19-20): 769-773 doi: 10.1016/j.crma.2013.09.015
|
| 30 |
Liang X, Liu Q. Weighted moments of the limit of a branching process in a random environment. Proc Steklov Inst Math, 2013, 282(1): 127-145 doi: 10.1134/S0081543813060126
|
| 31 |
Liu Q. The exact Hausdorff dimension of a branching set. Probab Theory Related Fields, 1996, 104: 515-538 doi: 10.1007/BF01198165
|
| 32 |
Liu Q. Local dimensions of the branching measure on a Galton-Watson tree. Ann Inst Henri Poincaré, Probabilitiés et Statistique, 2001, 37: 195-222
|
| 33 |
Ney P E, Vidyashanker A N. Harmonic moments and large deviation rates for supercritical branching process. Ann Appl Probab, 2003, 13: 475-489 doi: 10.1214/aoap/1050689589
|
| 34 |
Smith W L, Wilkinson W E. On branching processes in random environments. Ann Math Statist, 1969, 40: 814-827 doi: 10.1214/aoms/1177697589
|
| 35 |
Tanny D. Limit theorems for branching processes in a random environment. Ann Probab, 1977, 5: 100-116 doi: 10.1214/aop/1176995894
|
| 36 |
Tanny D. A necessary and sufficient condition for a branching process in a random environment to grow like the product of its means. Stochastic Process Appl, 1988, 28: 123-139 doi: 10.1016/0304-4149(88)90070-1
|
| 37 |
Vatutin V A, Liu Q. Critical branching process with two types of particles evolving in asynchronous random environments. Theory Probab Appl, 2013, 57(2): 279-305 doi: 10.1137/S0040585X97985911
|
| 38 |
Wang H, Gao Z, Liu Q. Central limit theorems for a branching process i<?Pub Caret?>n a random environment. Statist Probab Lett, 2011, 81: 539-547 doi: 10.1016/j.spl.2011.01.003
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|