Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2014, Vol. 9 Issue (4) : 737-751    https://doi.org/10.1007/s11464-014-0397-z
SURVEY ARTICLE
Asymptotic properties of supercritical branching processes in random environments
Yingqiu LI1,Quansheng LIU1,2,*(),Zhiqiang GAO3,Hesong WANG1
1. College of Mathematics and Computing Sciences, Changsha University of Science and Technology, Changsha 410004, China
2. Université de Bretagne-Sud, UMR 6205, LMBA, F-56000 Vannes, France
3. School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China
 Download: PDF(155 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We consider a supercritical branching process (Zn) in an independent and identically distributed random environment ξ, and present some recent results on the asymptotic properties of the limit variable W of the natural martingale Wn=Zn/E[Zn|ξ], the convergence rates of W-Wn(by considering the convergence in law with a suitable norming, the almost sure convergence, the convergence in LP, and the convergence in probability), and limit theorems (such as central limit theorems, moderate and large deviations principles) on (log Zn).

Keywords Branching process      random environment      large deviation      moderate deviation      central limit theorem      moment      weighted moment      convergence rate     
Corresponding Author(s): Quansheng LIU   
Issue Date: 26 August 2014
 Cite this article:   
Yingqiu LI,Quansheng LIU,Zhiqiang GAO, et al. Asymptotic properties of supercritical branching processes in random environments[J]. Front. Math. China, 2014, 9(4): 737-751.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-014-0397-z
https://academic.hep.com.cn/fmc/EN/Y2014/V9/I4/737
1 Afanasyev V I, Geiger J, Kersting G, Vatutin V A. Criticality for branching processes in random environment. Ann Probab, 2005, 33(2): 645-673
doi: 10.1214/009117904000000928
2 Afanasyev V I, Geiger J, Kersting G, Vatutin V A. Functional limit theorems for strongly subcritical branching processes in random environment. Stochastic Process Appl, 2005, 115(10): 1658-1676
doi: 10.1016/j.spa.2005.05.001
3 Alsmeyer G, R?sler U. On the existence of ?-moments of the limit of a normalized supercritical Galton-Watson process. J Theoret Probab, 2004, 17(4): 905-928
doi: 10.1007/s10959-004-0582-1
4 Asmussen S. Convergence rates for branching processes. Ann Probab, 1976, 4: 139-146
doi: 10.1214/aop/1176996193
5 Athreya K B. Large deviation rates for branching processes—I. Single type case. Ann Appl Probab, 1994, 4: 779-790
doi: 10.1214/aoap/1177004971
6 Athreya K B, Karlin S. On branching processes in random environments I. Ann Math Statist, 1971, 42: 1499-1520
doi: 10.1214/aoms/1177693150
7 Athreya K B, Karlin S. On branching processes in random environments II. Ann Math Statist, 1971, 42: 1843-1858
doi: 10.1214/aoms/1177693051
8 Athreya K B, Ney P E. Branching Processes. Berlin: Springer, 1972
doi: 10.1007/978-3-642-65371-1
9 Bansaye V, Berestycki J. Large deviations for branching processes in random environment. Markov Process Related Fields, 2009, 15: 493-524
10 Bansaye V, B?inghoff C. Upper large deviations for branching processes in random environment with heavy tails. Preprint, 2010
11 Bingham N H, Doney R A. Asymptotic properties of supercritical branching processes I: The Galton-Watson processes. Adv Appl Probab, 1974, 6: 711-731
doi: 10.2307/1426188
12 B?inghoff C, Dyakonova E E, Kersting G, Vatutin V A. Branching processes in random environment which extinct at a given moment. Markov Process Related Fields, 2010, 16(2): 329-350
13 B?inghoff C, Kersting G. Upper large deviations of branching processes in a random environment-Offspring distributions with geometrically bounded tails. Stochastic Process Appl, 2010, 120: 2064-2077
doi: 10.1016/j.spa.2010.05.017
14 Dembo A, Zeitouni O. Large deviations Techniques and Applications. New York: Springer, 1998
doi: 10.1007/978-1-4612-5320-4
15 Fearn D H. Galton-Watson processes with generation dependence. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ California, Berkeley, Calif, 1970/1971), Vol IV: Biology and Health, Berkeley, Calif. Berkeley: Univ California Press, 1972, 159-172
16 Guivarc’h Y, Liu Q. Propriétés asymptotiques des processus de branchement en environnement aléatoire. C R Acad Sci Paris, Ser I, 2001, 332: 339-344
17 Hambly B. On the limit distribution of a supercritical branching process in a random environment. J Appl Probab, 1992, 29: 499-518
doi: 10.2307/3214889
18 Harris T E. The Theory of Branching Processes. Berlin: Springer, 1963
doi: 10.1007/978-3-642-51866-9
19 Heyde C C. A rate of convergence result for the super-critical Galton-Watson process. J Appl Probab, 1970, 7: 451-454
doi: 10.2307/3211980
20 Heyde C C. Some central limit analogues for super-critical Galton-Watson process. J Appl Probab, 1971, 8: 52-59
doi: 10.2307/3211837
21 Heyde C C, Brown B M. An invariance principle and some convergence rate results for branching processes. Z Wahrscheinlichkeitstheorie verw Geb, 1971, 20: 189-192
22 Huang C, Liu Q. Moments, moderate and large deviations for a branching process in a random environment. Stochastic Process Appl, 2012, 122: 522-545
doi: 10.1016/j.spa.2011.09.001
23 Huang C, Liu Q. Convergence rates for a supercritical branching process in a random environment. Markov Process Related Fields (to appear)
24 Huang C, Liu Q. Convergence in LP and its exponential rate for a branching process in a random environment. Preprint, 2014
25 Iksanov A. On some moments of the limit random variable for a normalized supercritical Galton-Watson process. In: Velle L R, ed. Focus on Probability Theory. New York: Nova Science Publishers, Inc, 2006, 151-158
26 Jagers P. Galton-Watson processes in varying environments. J Appl Probab, 1974, 11: 174-178
doi: 10.2307/3212594
27 Kozlov M V. On large deviations of branching processes in a random environment: geometric distribution of descendants. Discrete Math Appl, 2006, 16: 155-174
doi: 10.1515/156939206777344593
28 Li Y, Hu Y, Liu Q. Weighted moments for a supercritical branching process in a varying or random environment. Sci China Ser A: Math, 2011, 54(7): 1437-1444
doi: 10.1007/s11425-011-4220-y
29 Liang X, Liu Q. Weighted moments for the limit of a normalized supercritical Galton-Watson process. C R Math Acad Sci Paris, 2013, 351(19-20): 769-773
doi: 10.1016/j.crma.2013.09.015
30 Liang X, Liu Q. Weighted moments of the limit of a branching process in a random environment. Proc Steklov Inst Math, 2013, 282(1): 127-145
doi: 10.1134/S0081543813060126
31 Liu Q. The exact Hausdorff dimension of a branching set. Probab Theory Related Fields, 1996, 104: 515-538
doi: 10.1007/BF01198165
32 Liu Q. Local dimensions of the branching measure on a Galton-Watson tree. Ann Inst Henri Poincaré, Probabilitiés et Statistique, 2001, 37: 195-222
33 Ney P E, Vidyashanker A N. Harmonic moments and large deviation rates for supercritical branching process. Ann Appl Probab, 2003, 13: 475-489
doi: 10.1214/aoap/1050689589
34 Smith W L, Wilkinson W E. On branching processes in random environments. Ann Math Statist, 1969, 40: 814-827
doi: 10.1214/aoms/1177697589
35 Tanny D. Limit theorems for branching processes in a random environment. Ann Probab, 1977, 5: 100-116
doi: 10.1214/aop/1176995894
36 Tanny D. A necessary and sufficient condition for a branching process in a random environment to grow like the product of its means. Stochastic Process Appl, 1988, 28: 123-139
doi: 10.1016/0304-4149(88)90070-1
37 Vatutin V A, Liu Q. Critical branching process with two types of particles evolving in asynchronous random environments. Theory Probab Appl, 2013, 57(2): 279-305
doi: 10.1137/S0040585X97985911
38 Wang H, Gao Z, Liu Q. Central limit theorems for a branching process i<?Pub Caret?>n a random environment. Statist Probab Lett, 2011, 81: 539-547
doi: 10.1016/j.spl.2011.01.003
[1] Xiequan FAN, Haijuan HU, Quansheng LIU. Uniform Cramér moderate deviations and Berry-Esseen bounds for a supercritical branching process in a random environment[J]. Front. Math. China, 2020, 15(5): 891-914.
[2] Jing WANG, Yuhui ZHANG. Moments of integral-type downward functionals for single death processes[J]. Front. Math. China, 2020, 15(4): 749-768.
[3] Linlin FU, Jiahao XU, Fan WU. New proof of continuity of Lyapunov exponents for a class of smooth Schrödinger cocycles with weak Liouville frequencies[J]. Front. Math. China, 2020, 15(3): 467-489.
[4] Xiaocui MA, Fubao XI, Dezhi LIU. Moderate deviations for neutral functional stochastic differential equations driven by Levy noises[J]. Front. Math. China, 2020, 15(3): 529-554.
[5] Yalin SUN, Lizhen WU. Generalization of Erdős-Kac theorem[J]. Front. Math. China, 2019, 14(6): 1303-1316.
[6] Yuhui ZHANG, Xiaofeng ZHOU. High order moments of first hitting times for single death processes[J]. Front. Math. China, 2019, 14(5): 1037-1061.
[7] Guangqiang LAN, Fang XIA. General decay asymptotic stability of neutral stochastic differential delayed equations with Markov switching[J]. Front. Math. China, 2019, 14(4): 793-818.
[8] Liping XU, Jiaowan LUO. Global attractiveness and exponential decay of neutral stochastic functional differential equations driven by fBm with Hurst parameter less than 1/2[J]. Front. Math. China, 2018, 13(6): 1469-1487.
[9] Yuhui ZHANG. Criteria on ergodicity and strong ergodicity of single death processes[J]. Front. Math. China, 2018, 13(5): 1215-1243.
[10] Wenming HONG, Hui YANG. Scaling limit theorem for transient random walk in random environment[J]. Front. Math. China, 2018, 13(5): 1033-1044.
[11] Yongqiang SUO, Jin TAO, Wei ZHANG. Moderate deviation and central limit theorem for stochastic differential delay equations with polynomial growth[J]. Front. Math. China, 2018, 13(4): 913-933.
[12] Yunshi GAO, Hui JIANG, Shaochen WANG. Moderate deviations for Euler-Maruyama approximation of Hull-White stochastic volatility model[J]. Front. Math. China, 2018, 13(4): 809-832.
[13] Yuanyuan LIU, Yanhong SONG. Integral-type functionals of first hitting times for continuous-time Markov chains[J]. Front. Math. China, 2018, 13(3): 619-632.
[14] Fuqing GAO, Qiaojing LIU. Moderate deviations for estimators under exponentially stochastic differentiability conditions[J]. Front. Math. China, 2018, 13(1): 25-40.
[15] Zhi LI, Litan YAN, Xianghui ZHOU. Global attracting sets and stability of neutral stochastic functional differential equations driven by Rosenblatt process[J]. Front. Math. China, 2018, 13(1): 87-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed