Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2015, Vol. 10 Issue (1) : 221-237    https://doi.org/10.1007/s11464-014-0417-z
RESEARCH ARTICLE
Effective algorithms for computing triangular operator in Schubert calculus
Kai ZHANG1,*(),Jiachuan ZHANG1,Haibao DUAN2,Jingzhi LI3,*()
1. Department of Mathematics, Jilin University, Changchun 130023, China
2. Institute of Mathematics, Chinese Academy of Sciences, Beijing 100080, China
3. Faculty of Science, South University of Science and Technology of China, Shenzhen 518055, China
 Download: PDF(239 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We develop two parallel algorithms progressively based on C++ to compute a triangle operator problem, which plays an important role in the study of Schubert calculus. We also analyse the computational complexity of each algorithm by using combinatorial quantities, such as the Catalan number, the Motzkin number, and the central binomial coefficients. The accuracy and efficiency of our algorithms have been justified by numerical experiments.

Keywords Triangular operator      Schubert calculus      parallel algorithm      central binomial coefficient     
Corresponding Author(s): Kai ZHANG   
Issue Date: 30 December 2014
 Cite this article:   
Haibao DUAN,Jingzhi LI,Kai ZHANG, et al. Effective algorithms for computing triangular operator in Schubert calculus[J]. Front. Math. China, 2015, 10(1): 221-237.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-014-0417-z
https://academic.hep.com.cn/fmc/EN/Y2015/V10/I1/221
1 Bott R, Samelson H. The cohomology ring of G/T. Nat Acad Sci, 1955, 41: 490-492
https://doi.org/10.1073/pnas.41.7.490
2 Donaghey R, Shapiro L W. Motzkin numbers. J Combin Theory Ser A, 1977, 23: 291-301
https://doi.org/10.1016/0097-3165(77)90020-6
3 Duan H B. Multiplicative rule of Schubert classes. Invent Math, 2005, 159(2): 407-436
https://doi.org/10.1007/s00222-004-0394-z
4 Duan H B. The degree of a Schubert variety. Adv Math, 2003, 180: 112-133
https://doi.org/10.1016/S0001-8708(02)00098-1
5 Duan H B, Zhao X Z. Algorithm for multiplying Schubert classes. Inter J Algebra Comput, 2006, 16: 1197-1210
https://doi.org/10.1142/S021819670600344X
6 Duan H B, Zhao X Z. A unified formula for Steenrod operations in flag manifolds. Compos Math, 2007, 143(1): 257-270
https://doi.org/10.1112/S0010437X06002405
7 Duan H B, Zhao X Z. Schubert presentation of the integral cohomology ring of the flag manifolds G/T. arXiv: 0801.2444
8 Duan H B, Zhao X Z. The Chow rings of generalized Grassmannians. Found Comput Math, 2010, 10(3): 245-274
https://doi.org/10.1007/s10208-010-9058-0
9 Elizaldea S, Mansour T. Restricted Motzkin permutations, Motzkin paths, continued fractions, and Chebyshev polynomials. Discrete Math, 2005, 305(3): 170-189
https://doi.org/10.1016/j.disc.2005.10.010
10 Huber B, Sottile F, Sturmfels B. Numerical Schubert calculus. J Symbolic Comput, 1998, 26: 767-788
https://doi.org/10.1006/jsco.1998.0239
11 Kleiman S, Laksov D. Schubert calculus. Amer Math Monthly, 1974, 79: 1061-1082
https://doi.org/10.2307/2317421
12 Knuth D. The Art of Computer Programming, Vol 3. Sorting and Searching. Boston: Addison-Wesley, 1973, 506-542
13 Koshy T. Catalan Numbers with Applications. Oxford: Oxford University Press, 2008
https://doi.org/10.1093/acprof:oso/9780195334548.001.0001
14 Li T Y, Wang X S, Wu M N. Numerical Schubert calculus by the Pieri homotopy algorithm. SIAM J Numer Anal, 2002, 40: 578-600
https://doi.org/10.1137/S003614290139175X
15 Pitman J. Probability. Berlin: Springer-Verlag, 1993
16 Sottile F. Four entries for Kluwer Encyclopaedia of Mathematics. arXiv: math/0102047
[1] Yunnan ZHANG, Huaijie ZHONG. Strongly irreducible operators and Cowen-Douglas operators on c0, lp (1≤p<∞)[J]. Front Math Chin, 2011, 6(5): 987-1001.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed