|
|
|
Effective algorithms for computing triangular operator in Schubert calculus |
Kai ZHANG1,*( ),Jiachuan ZHANG1,Haibao DUAN2,Jingzhi LI3,*( ) |
1. Department of Mathematics, Jilin University, Changchun 130023, China 2. Institute of Mathematics, Chinese Academy of Sciences, Beijing 100080, China 3. Faculty of Science, South University of Science and Technology of China, Shenzhen 518055, China |
|
|
|
|
Abstract We develop two parallel algorithms progressively based on C++ to compute a triangle operator problem, which plays an important role in the study of Schubert calculus. We also analyse the computational complexity of each algorithm by using combinatorial quantities, such as the Catalan number, the Motzkin number, and the central binomial coefficients. The accuracy and efficiency of our algorithms have been justified by numerical experiments.
|
| Keywords
Triangular operator
Schubert calculus
parallel algorithm
central binomial coefficient
|
|
Corresponding Author(s):
Kai ZHANG
|
|
Issue Date: 30 December 2014
|
|
| 1 |
Bott R, Samelson H. The cohomology ring of G/T. Nat Acad Sci, 1955, 41: 490-492
https://doi.org/10.1073/pnas.41.7.490
|
| 2 |
Donaghey R, Shapiro L W. Motzkin numbers. J Combin Theory Ser A, 1977, 23: 291-301
https://doi.org/10.1016/0097-3165(77)90020-6
|
| 3 |
Duan H B. Multiplicative rule of Schubert classes. Invent Math, 2005, 159(2): 407-436
https://doi.org/10.1007/s00222-004-0394-z
|
| 4 |
Duan H B. The degree of a Schubert variety. Adv Math, 2003, 180: 112-133
https://doi.org/10.1016/S0001-8708(02)00098-1
|
| 5 |
Duan H B, Zhao X Z. Algorithm for multiplying Schubert classes. Inter J Algebra Comput, 2006, 16: 1197-1210
https://doi.org/10.1142/S021819670600344X
|
| 6 |
Duan H B, Zhao X Z. A unified formula for Steenrod operations in flag manifolds. Compos Math, 2007, 143(1): 257-270
https://doi.org/10.1112/S0010437X06002405
|
| 7 |
Duan H B, Zhao X Z. Schubert presentation of the integral cohomology ring of the flag manifolds G/T. arXiv: 0801.2444
|
| 8 |
Duan H B, Zhao X Z. The Chow rings of generalized Grassmannians. Found Comput Math, 2010, 10(3): 245-274
https://doi.org/10.1007/s10208-010-9058-0
|
| 9 |
Elizaldea S, Mansour T. Restricted Motzkin permutations, Motzkin paths, continued fractions, and Chebyshev polynomials. Discrete Math, 2005, 305(3): 170-189
https://doi.org/10.1016/j.disc.2005.10.010
|
| 10 |
Huber B, Sottile F, Sturmfels B. Numerical Schubert calculus. J Symbolic Comput, 1998, 26: 767-788
https://doi.org/10.1006/jsco.1998.0239
|
| 11 |
Kleiman S, Laksov D. Schubert calculus. Amer Math Monthly, 1974, 79: 1061-1082
https://doi.org/10.2307/2317421
|
| 12 |
Knuth D. The Art of Computer Programming, Vol 3. Sorting and Searching. Boston: Addison-Wesley, 1973, 506-542
|
| 13 |
Koshy T. Catalan Numbers with Applications. Oxford: Oxford University Press, 2008
https://doi.org/10.1093/acprof:oso/9780195334548.001.0001
|
| 14 |
Li T Y, Wang X S, Wu M N. Numerical Schubert calculus by the Pieri homotopy algorithm. SIAM J Numer Anal, 2002, 40: 578-600
https://doi.org/10.1137/S003614290139175X
|
| 15 |
Pitman J. Probability. Berlin: Springer-Verlag, 1993
|
| 16 |
Sottile F. Four entries for Kluwer Encyclopaedia of Mathematics. arXiv: math/0102047
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|