Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2014, Vol. 9 Issue (6) : 1401-1410    https://doi.org/10.1007/s11464-014-0427-x
RESEARCH ARTICLE
Transitivity of varietal hypercube networks
Li XIAO,Jin CAO,Jun-Ming XU()
School of Mathematical Sciences, University of Science and Technology of China, Wentsun Wu Key Laboratory of CAS, Hefei 230026, China
 Download: PDF(107 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The varietal hypercube VQn is a variant of the hypercube Qn and has better properties than Qn with the same number of edges and vertices. This paper proves that VQn is vertex-transitive. This property shows that when VQn is used to model an interconnection network, it is high symmetrical and obviously superior to other variants of the hypercube such as the crossed cube.

Keywords Combinatorics      graph      transitivity      varietal hypercube network     
Corresponding Author(s): Jun-Ming XU   
Issue Date: 29 October 2014
 Cite this article:   
Li XIAO,Jin CAO,Jun-Ming XU. Transitivity of varietal hypercube networks[J]. Front. Math. China, 2014, 9(6): 1401-1410.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-014-0427-x
https://academic.hep.com.cn/fmc/EN/Y2014/V9/I6/1401
1 Cao J, Xiao L, Xu J-M. Cycles and paths embedded in varietal hypercubes. J Univ Sci Technol China, 2014, 44(9): 782-789
2 Cheng S-Y, Chuang J-H. Varietal hypercube—a new interconnection networks topology for large scale multicomputer. Proc Internat Conf Parallel Distributed Systems, 1994: 703-708
3 Huang J, Xu J-M. Multiply-twisted hypercube with four or less dimensions is vertextransitive. Chinese Quart J Math, 2005, 20(4): 430-434
4 Jiang M, Hu X-Y, Li Q-L. Fault-tolerant diameter and width diameter of varietal hypercubes. Appl Math J Chinese Univ Ser A, 2010, 25(3): 372-378 (in Chinese)
5 Kulasinghe P, Bettayeb S. Multiply-twisted hypercube with five or more dimensions is not vertex-transitive. Inform Process Lett, 1995, 53: 33-36
https://doi.org/10.1016/0020-0190(94)00167-W
6 Ma M-J, Xu J-M. Algebraic properties and panconnectivity of folded hypercubes. Ars Combinatoria, 2010, 95: 179-186
7 Wang J-W, Xu J-M. Reliability analysis of varietal hypercube networks. J Univ Sci Technol China, 2009, 39(12): 1248-1252
8 Xu J-M. Theory and Application of Graphs. Dordrecht/Boston/London: Kluwer Academic Publishers, 2003
https://doi.org/10.1007/978-1-4419-8698-6
9 Xu J-M. Combinatorial Theory in Networks. Beijing: Science Press, 2013
[1] Wen-Huan WANG, Ling YUAN. Uniform supertrees with extremal spectral radii[J]. Front. Math. China, 2020, 15(6): 1211-1229.
[2] Jiaxin SHEN, Shenglin ZHOU. Flag-transitive 2-υ,5,λ designs with sporadic socle[J]. Front. Math. China, 2020, 15(6): 1201-1210.
[3] Yizheng FAN, Zhu ZHU, Yi WANG. Least H-eigenvalue of adjacency tensor of hypergraphs with cut vertices[J]. Front. Math. China, 2020, 15(3): 451-465.
[4] Hongmei YAO, Li MA, Chunmeng LIU, Changjiang BU. Brualdi-type inclusion sets of Z-eigenvalues and lk,s-singular values for tensors[J]. Front. Math. China, 2020, 15(3): 601-612.
[5] Xin LI, Jiming GUO, Zhiwen WANG. Minimal least eigenvalue of connected graphs of order n and size m = n + k (5≤k≤8)[J]. Front. Math. China, 2019, 14(6): 1213-1230.
[6] Lihua YOU, Xiaohua HUANG, Xiying YUAN. Sharp bounds for spectral radius of nonnegative weakly irreducible tensors[J]. Front. Math. China, 2019, 14(5): 989-1015.
[7] Kinkar Chandra DAS, Huiqiu LIN, Jiming GUO. Distance signless Laplacian eigenvalues of graphs[J]. Front. Math. China, 2019, 14(4): 693-713.
[8] Thomas BRÜSTLE, Jie ZHANG. Non-leaving-face property for marked surfaces[J]. Front. Math. China, 2019, 14(3): 521-534.
[9] Ziqiu LIU, Yunfeng ZHAO, Yuqin ZHANG. Perfect 3-colorings on 6-regular graphs of order 9[J]. Front. Math. China, 2019, 14(3): 605-618.
[10] Jun HE, Yanmin LIU, Junkang TIAN, Xianghu LIU. Upper bounds for signless Laplacian Z-spectral radius of uniform hypergraphs[J]. Front. Math. China, 2019, 14(1): 17-24.
[11] Xiaoxiao ZHANG, Aijin LIN. Positive solutions of p-th Yamabe type equations on graphs[J]. Front. Math. China, 2018, 13(6): 1501-1514.
[12] Xiaofeng XUE. Phase transition for SIR model with random transition rates on complete graphs[J]. Front. Math. China, 2018, 13(3): 667-690.
[13] Zhihe LIANG. Super (a, d)-edge-antimagic total labelings of complete bipartite graphs[J]. Front. Math. China, 2018, 13(1): 129-146.
[14] Xiying YUAN, Xuelian SI, Li ZHANG. Ordering uniform supertrees by their spectral radii[J]. Front. Math. China, 2017, 12(6): 1393-1408.
[15] Dongmei CHEN, Zhibing CHEN, Xiao-Dong ZHANG. Spectral radius of uniform hypergraphs and degree sequences[J]. Front. Math. China, 2017, 12(6): 1279-1288.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed