|
|
|
A relation between tilting graphs and cluster-tilting graphs of hereditary algebras |
Fang LI1,Yichao YANG1,2,*( ) |
1. Department of Mathematics, Zhejiang University (Yuquan Campus), Hangzhou 310027, China 2. Department of Mathematics, University of Sherbrooke, Sherbrooke J1K 2R1, Canada |
|
|
|
|
Abstract We give the condition of isomorphisms between tilting graphs and cluster-tilting graphs of hereditary algebras. As a conclusion, it is proved that a graph is a skeleton graph of Stasheff polytope if and only if it is both the tilting graph of a hereditary algebra and also the cluster-tilting graph of another hereditary algebra. At last, when comparing such uniformity, the geometric realizations of simplicial complexes associated with tilting modules and clustertilting objects are discussed respectively.
|
| Keywords
Tilting graph
cluster-tilting graph
cluster category
Stasheff polytope
linear quiver
|
|
Corresponding Author(s):
Yichao YANG
|
|
Issue Date: 12 February 2015
|
|
| 1 |
Assem I, Simson D, Skowroński A. Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory. London Math Soc Student Texts, 65. Cambridge: Cambridge Univ Press, 2006
|
| 2 |
Auslander M, Reiten I. Representation theory of Artin algebras. III. Almost split sequences. Comm Algebra, 1975, 3(3): 239-294
https://doi.org/10.1080/00927877508822046
|
| 3 |
Buan A B, Marsh R J. Cluster-tilting theory. In: Trends in Representation Theory of Algebras and Related Topics. Contemporary Mathematics, 406. Providence: Amer Math Soc, 2006, 1-30
https://doi.org/10.1090/conm/406/07651
|
| 4 |
Buan A B, Marsh R J, Reineke M, Reiten I, Todorov G. Tilting theory and cluster combinatorics. Adv Math, 2006, 204(2): 572-618
https://doi.org/10.1016/j.aim.2005.06.003
|
| 5 |
Fomin S, Shapiro M, Thurston D. Cluster algebras and triangulated surfaces. I. Cluster complexes. Acta Math, 2008, 201(1): 83-146
https://doi.org/10.1007/s11511-008-0030-7
|
| 6 |
Fomin S, Zelevinsky A. Cluster algebras I: Foundations. J Amer Math Soc, 2002, 15(2): 497-529
https://doi.org/10.1090/S0894-0347-01-00385-X
|
| 7 |
Fomin S, Zelevinsky A. Y-systems and generalized associahedra. Ann Math, 2003, 158(3): 977-1018
https://doi.org/10.4007/annals.2003.158.977
|
| 8 |
Happel D. Triangulated Categories in the Representation Theory of Finite Dimensional Algebras. London Math Soc Lecture Note Series, 119. Cambridge: Cambridge Univ Press, 1988
https://doi.org/10.1017/CBO9780511629228
|
| 9 |
Happel D, Unger L. On the quiver of tilting modules. J Algebra, 2005, 284(2): 857-868
https://doi.org/10.1016/j.jalgebra.2004.11.007
|
| 10 |
Hügel L A, Happel D, Krause H. Handbook of Tilting Theory. London Math Soc Lecture Note Series, 332. Cambridge: Cambridge Univ Press, 2007
|
| 11 |
Iyama O, Yoshino Y. Mutation in triangulated categories and rigid Cohen-Macaulay modules. Invent Math, 2008, 172(1): 117-168
https://doi.org/10.1007/s00222-007-0096-4
|
| 12 |
Kase R. The number of arrows in the quiver of tilting modules over a path algebra of type A and D. Research Institute for Math Science K?kyūroku, 2012, 1795: 154-162
|
| 13 |
Keller B. On triangulated orbit categories. Doc Math, 2005, 10: 551-581
|
| 14 |
Riedtmann C, Schofield A. On a simplicial complex associated with tilting modules. Comm Math Helv, 1991, 66(1): 70-78
https://doi.org/10.1007/BF02566636
|
| 15 |
Unger L, Ungruhe M. On the genus of the graph of tilting modules. Beitr?ge Algebra Geom, 2004, 45(2): 415-427
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|