Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2015, Vol. 10 Issue (2) : 275-291    https://doi.org/10.1007/s11464-015-0426-6
RESEARCH ARTICLE
A relation between tilting graphs and cluster-tilting graphs of hereditary algebras
Fang LI1,Yichao YANG1,2,*()
1. Department of Mathematics, Zhejiang University (Yuquan Campus), Hangzhou 310027, China
2. Department of Mathematics, University of Sherbrooke, Sherbrooke J1K 2R1, Canada
 Download: PDF(267 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We give the condition of isomorphisms between tilting graphs and cluster-tilting graphs of hereditary algebras. As a conclusion, it is proved that a graph is a skeleton graph of Stasheff polytope if and only if it is both the tilting graph of a hereditary algebra and also the cluster-tilting graph of another hereditary algebra. At last, when comparing such uniformity, the geometric realizations of simplicial complexes associated with tilting modules and clustertilting objects are discussed respectively.

Keywords Tilting graph      cluster-tilting graph      cluster category      Stasheff polytope      linear quiver     
Corresponding Author(s): Yichao YANG   
Issue Date: 12 February 2015
 Cite this article:   
Fang LI,Yichao YANG. A relation between tilting graphs and cluster-tilting graphs of hereditary algebras[J]. Front. Math. China, 2015, 10(2): 275-291.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-015-0426-6
https://academic.hep.com.cn/fmc/EN/Y2015/V10/I2/275
1 Assem I, Simson D, Skowroński A. Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory. London Math Soc Student Texts, 65. Cambridge: Cambridge Univ Press, 2006
2 Auslander M, Reiten I. Representation theory of Artin algebras. III. Almost split sequences. Comm Algebra, 1975, 3(3): 239-294
https://doi.org/10.1080/00927877508822046
3 Buan A B, Marsh R J. Cluster-tilting theory. In: Trends in Representation Theory of Algebras and Related Topics. Contemporary Mathematics, 406. Providence: Amer Math Soc, 2006, 1-30
https://doi.org/10.1090/conm/406/07651
4 Buan A B, Marsh R J, Reineke M, Reiten I, Todorov G. Tilting theory and cluster combinatorics. Adv Math, 2006, 204(2): 572-618
https://doi.org/10.1016/j.aim.2005.06.003
5 Fomin S, Shapiro M, Thurston D. Cluster algebras and triangulated surfaces. I. Cluster complexes. Acta Math, 2008, 201(1): 83-146
https://doi.org/10.1007/s11511-008-0030-7
6 Fomin S, Zelevinsky A. Cluster algebras I: Foundations. J Amer Math Soc, 2002, 15(2): 497-529
https://doi.org/10.1090/S0894-0347-01-00385-X
7 Fomin S, Zelevinsky A. Y-systems and generalized associahedra. Ann Math, 2003, 158(3): 977-1018
https://doi.org/10.4007/annals.2003.158.977
8 Happel D. Triangulated Categories in the Representation Theory of Finite Dimensional Algebras. London Math Soc Lecture Note Series, 119. Cambridge: Cambridge Univ Press, 1988
https://doi.org/10.1017/CBO9780511629228
9 Happel D, Unger L. On the quiver of tilting modules. J Algebra, 2005, 284(2): 857-868
https://doi.org/10.1016/j.jalgebra.2004.11.007
10 Hügel L A, Happel D, Krause H. Handbook of Tilting Theory. London Math Soc Lecture Note Series, 332. Cambridge: Cambridge Univ Press, 2007
11 Iyama O, Yoshino Y. Mutation in triangulated categories and rigid Cohen-Macaulay modules. Invent Math, 2008, 172(1): 117-168
https://doi.org/10.1007/s00222-007-0096-4
12 Kase R. The number of arrows in the quiver of tilting modules over a path algebra of type A and D. Research Institute for Math Science K?kyūroku, 2012, 1795: 154-162
13 Keller B. On triangulated orbit categories. Doc Math, 2005, 10: 551-581
14 Riedtmann C, Schofield A. On a simplicial complex associated with tilting modules. Comm Math Helv, 1991, 66(1): 70-78
https://doi.org/10.1007/BF02566636
15 Unger L, Ungruhe M. On the genus of the graph of tilting modules. Beitr?ge Algebra Geom, 2004, 45(2): 415-427
[1] Fang LI,Lingyu WAN. On duality preservability of Auslander-Reiten quivers of derived categories and cluster categories[J]. Front. Math. China, 2016, 11(4): 957-984.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed