Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2015, Vol. 10 Issue (6) : 1325-1341    https://doi.org/10.1007/s11464-015-0442-6
RESEARCH ARTICLE
Oscillations of coefficients of symmetric square L-functions over primes
Fei HOU()
School of Mathematics, Shandong University, Jinan 250100, China
 Download: PDF(166 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Let L(s, sym2f) be the symmetric-square L-function associated to a primitive holomorphic cusp form f for SL(2,?), with tf(n,1) denoting the nth coefficient of the Dirichlet series for it. It is proved that, for N≥2 and any α?, there exists an effective positive constant c such that nNΛ(n)tf(n,1)e(nα)Nexp(clogN), where Λ(n) is the von Mangoldt function, and the implied constant only depends on f. We also study the analogue of Vinogradov’s three primes theorem associated to the coefficients of Rankin-Selberg L-functions.

Keywords symmetric-square L-function      primitive holomorphic cusp form      Fourier coefficient     
Corresponding Author(s): Fei HOU   
Issue Date: 12 October 2015
 Cite this article:   
Fei HOU. Oscillations of coefficients of symmetric square L-functions over primes[J]. Front. Math. China, 2015, 10(6): 1325-1341.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-015-0442-6
https://academic.hep.com.cn/fmc/EN/Y2015/V10/I6/1325
1 Davenport H. Multiplicative Number Theory. 3rd ed. Berlin: Springer-Verlag, 2000
2 Deligne P. La conjecture de Weil I. Publ Math Inst Hautes Études Sci, 1974, 43: 273−307
https://doi.org/10.1007/BF02684373
3 Fouvry É, Ganguly S. Strong orthogonality between the Möbius function, additive characters, and Fourier coefficients of cusp forms. Compos Math, 2014, 150: 763−797
https://doi.org/10.1112/S0010437X13007732
4 Goldfeld D. Automorphic Forms and L-Functions for the Group GL(n, R). Cambridge: Cambridge Univ Press, 2006
https://doi.org/10.1017/CBO9780511542923
5 Hoffstein J, Lockhart P. Coefficients of Maass forms and the Siegel zero. Ann Math, 1994, 140: 161−181
https://doi.org/10.2307/2118543
6 Iwaniec H, Kowalski E. Analytic Number Theory. Amer Math Soc Colloq Publ, Vol 53. Providence: Amer Math Soc, 2004
7 Lau Y K, Lü G. Sums of Fourier coefficients of cusp forms. Q J Math, 2011, 62: 687−716
https://doi.org/10.1093/qmath/haq012
8 Liu J, Ye Y. Perron’s formula and the prime number theorem for automorphic L-functions. Pure Appl Math Q, 2007, 3: 481−497
https://doi.org/10.4310/PAMQ.2007.v3.n2.a4
9 Perelli A. On some exponential sums connected with Ramanujan’s τ -function. Mathematika, 1984, 31: 150−158
https://doi.org/10.1112/S0025579300010755
10 Stephen M D. Cancellation in additively twisted sums on GL(n). Amer J Math, 2006, 128: 699−729
https://doi.org/10.1353/ajm.2006.0027
11 Vaughan R C. An elementary method in prime number theory. Acta Arith, 1980, 37: 111−115
12 Vinogradov I M. Some theorems concerning the theory of primes. Mat Sb (N S), 1937, 2: 179−195
[1] Nathan SALAZAR, Yangbo YE. Spectral square moments of a resonance sum for Maass forms[J]. Front. Math. China, 2017, 12(5): 1183-1200.
[2] Huan LIU. Sums of Fourier coefficients of cusp forms of level D twisted by exponential functions[J]. Front. Math. China, 2017, 12(3): 655-673.
[3] Liqun HU. Quadratic forms connected with Fourier coefficients of Maass cusp forms[J]. Front. Math. China, 2015, 10(5): 1101-1112.
[4] Qingfeng SUN,Yuanying WU. Exponential sums involving Maass forms[J]. Front. Math. China, 2014, 9(6): 1349-1366.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed