|
|
|
Optimal transport maps on infinite dimensional spaces |
Shizan FANG( ),Vincent NOLOT |
| I.M.B., BP 47870, Université de Bourgogne, Dijon, France In memory of Denis Feyel |
|
|
|
|
Abstract We will give a survey on results concerning Girsanov transformations, transportation cost inequalities, convexity of entropy, and optimal transport maps on some infinite dimensional spaces. Some open Problems will be arisen.
|
| Keywords
Girsanov theorem
entropy
optimal transport map
Wiener space
Lebesgue point
|
|
Corresponding Author(s):
Shizan FANG
|
|
Issue Date: 05 June 2015
|
|
| 1 |
Ambrosio L, Gigli N, Savaré G. Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lect in Math, ETH Zürich. Basel: Birkh?user, 2005
|
| 2 |
Ambrosio L, Kirchheim B, Pratelli A. Existence of optimal transport maps for crystalline norms. Duke Math J, 2004, 125: 207-241
https://doi.org/10.1215/S0012-7094-04-12521-7
|
| 3 |
Ambrosio L, Pratelli A. Existence and stability results in the L1 theory of optimal transportation. In: Morel J-M, Takens F, Teissier B, eds. Optimal Transportation and Applications. Lecture Notes in Math, Vol 1813. Berlin: Springer, 2003, 123-160
https://doi.org/10.1007/978-3-540-44857-0_5
|
| 4 |
Bao J, Wang F-Y, Yuan C G. Transportation cost inequalities for neutral functional stochastic equations. Z Anal Anwend, 2013, 32: 457-475
https://doi.org/10.4171/ZAA/1494
|
| 5 |
Bogachev V I, Kolesnikov A V. Sobolev regularity for Monge-Ampère equation in the Wiener space. arXiv: 1110.1822v1, 2011
|
| 6 |
Brenier Y. Polar factorization and monotone rearrangement of vector valued functions. Comm Pure Appl Math, 1991, 44: 375-417
https://doi.org/10.1002/cpa.3160440402
|
| 7 |
Champion T, De Pascale L. The Monge problem in ?d. Duke Math J, 2010, 157: 551-572
|
| 8 |
Djellout H, Guilin A, Wu L. Transportation cost-information inequalities for random dynamical systems and diffusions. Ann Probab, 2004, 32: 2702-2732
https://doi.org/10.1214/009117904000000531
|
| 9 |
Driver B. Integration by parts and quasi-invariance for heat measures on loop groups. J Funct Anal, 1997, 149: 470-547
https://doi.org/10.1006/jfan.1997.3103
|
| 10 |
Driver B, Lohrentz T. Logarithmic Sobolev inequalities for pinned loop groups. J Funct Anal, 1996, 140: 381-448
https://doi.org/10.1006/jfan.1996.0113
|
| 11 |
Driver B, Srimurthy V K. Absolute continuity of heat kernel measure with pinned Wiener measure on loop groups. Ann Probab, 2001, 29: 691-723
|
| 12 |
Fang S. Introduction to Malliavin Calculus. Math Ser for Graduate Students. Beijing/Berlin: Tsinghua University Press/Springer, 2005
|
| 13 |
Fang S, Malliavin P. Stochastic analysis on the path space of a Riemannian manifold. J Funct Anal, 1993, 131: 249-274
https://doi.org/10.1006/jfan.1993.1145
|
| 14 |
Fang S, Nolot V. Sobolev estimates for optimal transport maps on Gaussian spaces. J Funct Anal, 2014, 266: 5045-5084
https://doi.org/10.1016/j.jfa.2014.02.017
|
| 15 |
Fang S, Shao J. Transportation cost inequalities on path and loop groups. J Funct Anal, 2005, 218: 293-317
https://doi.org/10.1016/j.jfa.2004.02.002
|
| 16 |
Fang S, Shao J. Optimal transport maps for Monge-Kantorovich problem on loop groups. J Funct Anal, 2007, 248: 225-257
https://doi.org/10.1016/j.jfa.2006.11.016
|
| 17 |
Fang S, Shao J, Sturm K T. Wasserstein space over the Wiener space. Probab Theory Related Fields, 2010, 146: 535-565
https://doi.org/10.1007/s00440-009-0199-5
|
| 18 |
Fang S, Wang F Y, Wu B. Transportation-cost inequality on path spaces with uniform distance. Stochastic Process Appl, 2008, 118(12): 2181-2197
https://doi.org/10.1016/j.spa.2008.01.004
|
| 19 |
Feyel D, üstünel A S. Monge-Kantorovich measure transportation and Monge-Ampère equation on Wiener space. Probab Theory Related Fields, 2004, 128: 347-385
https://doi.org/10.1007/s00440-003-0307-x
|
| 20 |
Feyel D, üstünel A S. Solution of the Monge-Ampère equation on Wiener space for general log-concave measures. J Funct Anal, 2006, 232: 29-55
https://doi.org/10.1016/j.jfa.2005.05.008
|
| 21 |
Gross L. Logarithmic Sobolev inequalities on Lie groups. Illinois J Math, 1992, 36: 447-490
|
| 22 |
Knott M, Smith C S. On the optimal mapping of distributions. J Optim Theory Appl, 1984, 43(1): 39-49
https://doi.org/10.1007/BF00934745
|
| 23 |
Kolesnikov A V. On Sobolev regularity of mass transport and transportation inequalities. arXiv: 1007.1103v3, 2011
|
| 24 |
Lassalle R. Invertibility of adapted perturbations of the identity on abstract Wiener space. J Funct Anal, 2012, 262: 2734-2776
https://doi.org/10.1016/j.jfa.2011.12.025
|
| 25 |
Lott J, Villani C. Ricci curvature for metric-measure spaces via optimal transport. Ann Math, 2009, 169: 903-991
https://doi.org/10.4007/annals.2009.169.903
|
| 26 |
Ma Y. Transportation inequalities for stochastic differential equations with jumps. Stochastic Process Appl, 2010, 120: 2-21
https://doi.org/10.1016/j.spa.2009.09.012
|
| 27 |
Malliavin P. Stochastic Analysis. Grundlehren Math Wiss, Vol 313. Berlin: Springer, 1997
|
| 28 |
Malliavin P. Hypoellipticity in infinite dimension. In: Pinsky M, ed. Diffusion Processes and Related Problems in Analysis, Vol I: Diffusions in Analysis and Geometry. Progress in Probability. Boston: Birkh?user, 2012, 17-33
|
| 29 |
McCann R. Polar factorization of maps on Riemannian manifolds. Geom Funct Anal, 2001, 11: 589-608
https://doi.org/10.1007/PL00001679
|
| 30 |
Nolot V. Convexity and problems of optimal transport maps on the Wiener space. Ph D Thesis, University of Bourgogne, 2013
|
| 31 |
Rachev S T, Rüschendorf L. Mass Transportation Problems. Probab Appl. New York: Springer-Verlag, 1998
|
| 32 |
Shao J. From the heat measure to the pinned Wiener measure on loop groups. Bull Sci Math, 2011, 135: 601-612
https://doi.org/10.1016/j.bulsci.2011.07.012
|
| 33 |
Sturm K T. On the geometry of metric measure spaces. Acta Math, 2006, 196: 65-131
https://doi.org/10.1007/s11511-006-0002-8
|
| 34 |
Sturm K T, Von Renesse M K. Transport inequalities, gradient estimates, entropy and Ricci curvature. Comm Pure Appl Math, 2005, 58: 923-940
https://doi.org/10.1002/cpa.20060
|
| 35 |
Tiser J. Differentiation theorem for Gaussian measures on Hilbert space. Trans Amer Math Soc, 1988, 308: 655-666
https://doi.org/10.1090/S0002-9947-1988-0951621-8
|
| 36 |
üstünel A S. Entropy, invertibility and variational calculus of adapted shifts on Wiener space. J Funct Anal, 2009, 257: 3655-3689
https://doi.org/10.1016/j.jfa.2009.03.015
|
| 37 |
üstünel A S. Variational calculation of Laplace transforms via entropy on Wiener space and applications. J Funct Anal, 2014, 267: 3058-3083
https://doi.org/10.1016/j.jfa.2014.07.006
|
| 38 |
Villani C. Optimal Transport, Old and New. Grundlehren Math Wiss, Vol 338. Berlin: Springer-Verlag, 2009
|
| 39 |
Villani C. Regularity of optimal transport and cut-locus: from non smooth analysis to geometry to smooth analysis. Discrete Contin Dyn Syst, 2011, 30: 559-571
https://doi.org/10.3934/dcds.2011.30.559
|
| 40 |
Wang F-Y. Probability distance inequalities on Riemannian manifolds and path spaces. J Funct Anal, 2004, 206(1): 167-190
https://doi.org/10.1016/S0022-1236(02)00100-3
|
| 41 |
Wang F-Y. Transportation-cost inequalities on path space over manifolds with boundary. Doc Math, 2013, 18: 297-322
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|