Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2015, Vol. 10 Issue (4) : 715-732    https://doi.org/10.1007/s11464-015-0474-y
SURVEY ARTICLE
Optimal transport maps on infinite dimensional spaces
Shizan FANG(),Vincent NOLOT
I.M.B., BP 47870, Université de Bourgogne, Dijon, France In memory of Denis Feyel
 Download: PDF(189 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We will give a survey on results concerning Girsanov transformations, transportation cost inequalities, convexity of entropy, and optimal transport maps on some infinite dimensional spaces. Some open Problems will be arisen.

Keywords Girsanov theorem      entropy      optimal transport map      Wiener space      Lebesgue point     
Corresponding Author(s): Shizan FANG   
Issue Date: 05 June 2015
 Cite this article:   
Shizan FANG,Vincent NOLOT. Optimal transport maps on infinite dimensional spaces[J]. Front. Math. China, 2015, 10(4): 715-732.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-015-0474-y
https://academic.hep.com.cn/fmc/EN/Y2015/V10/I4/715
1 Ambrosio L, Gigli N, Savaré G. Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lect in Math, ETH Zürich. Basel: Birkh?user, 2005
2 Ambrosio L, Kirchheim B, Pratelli A. Existence of optimal transport maps for crystalline norms. Duke Math J, 2004, 125: 207-241
https://doi.org/10.1215/S0012-7094-04-12521-7
3 Ambrosio L, Pratelli A. Existence and stability results in the L1 theory of optimal transportation. In: Morel J-M, Takens F, Teissier B, eds. Optimal Transportation and Applications. Lecture Notes in Math, Vol 1813. Berlin: Springer, 2003, 123-160
https://doi.org/10.1007/978-3-540-44857-0_5
4 Bao J, Wang F-Y, Yuan C G. Transportation cost inequalities for neutral functional stochastic equations. Z Anal Anwend, 2013, 32: 457-475
https://doi.org/10.4171/ZAA/1494
5 Bogachev V I, Kolesnikov A V. Sobolev regularity for Monge-Ampère equation in the Wiener space. arXiv: 1110.1822v1, 2011
6 Brenier Y. Polar factorization and monotone rearrangement of vector valued functions. Comm Pure Appl Math, 1991, 44: 375-417
https://doi.org/10.1002/cpa.3160440402
7 Champion T, De Pascale L. The Monge problem in ?d. Duke Math J, 2010, 157: 551-572
8 Djellout H, Guilin A, Wu L. Transportation cost-information inequalities for random dynamical systems and diffusions. Ann Probab, 2004, 32: 2702-2732
https://doi.org/10.1214/009117904000000531
9 Driver B. Integration by parts and quasi-invariance for heat measures on loop groups. J Funct Anal, 1997, 149: 470-547
https://doi.org/10.1006/jfan.1997.3103
10 Driver B, Lohrentz T. Logarithmic Sobolev inequalities for pinned loop groups. J Funct Anal, 1996, 140: 381-448
https://doi.org/10.1006/jfan.1996.0113
11 Driver B, Srimurthy V K. Absolute continuity of heat kernel measure with pinned Wiener measure on loop groups. Ann Probab, 2001, 29: 691-723
12 Fang S. Introduction to Malliavin Calculus. Math Ser for Graduate Students. Beijing/Berlin: Tsinghua University Press/Springer, 2005
13 Fang S, Malliavin P. Stochastic analysis on the path space of a Riemannian manifold. J Funct Anal, 1993, 131: 249-274
https://doi.org/10.1006/jfan.1993.1145
14 Fang S, Nolot V. Sobolev estimates for optimal transport maps on Gaussian spaces. J Funct Anal, 2014, 266: 5045-5084
https://doi.org/10.1016/j.jfa.2014.02.017
15 Fang S, Shao J. Transportation cost inequalities on path and loop groups. J Funct Anal, 2005, 218: 293-317
https://doi.org/10.1016/j.jfa.2004.02.002
16 Fang S, Shao J. Optimal transport maps for Monge-Kantorovich problem on loop groups. J Funct Anal, 2007, 248: 225-257
https://doi.org/10.1016/j.jfa.2006.11.016
17 Fang S, Shao J, Sturm K T. Wasserstein space over the Wiener space. Probab Theory Related Fields, 2010, 146: 535-565
https://doi.org/10.1007/s00440-009-0199-5
18 Fang S, Wang F Y, Wu B. Transportation-cost inequality on path spaces with uniform distance. Stochastic Process Appl, 2008, 118(12): 2181-2197
https://doi.org/10.1016/j.spa.2008.01.004
19 Feyel D, üstünel A S. Monge-Kantorovich measure transportation and Monge-Ampère equation on Wiener space. Probab Theory Related Fields, 2004, 128: 347-385
https://doi.org/10.1007/s00440-003-0307-x
20 Feyel D, üstünel A S. Solution of the Monge-Ampère equation on Wiener space for general log-concave measures. J Funct Anal, 2006, 232: 29-55
https://doi.org/10.1016/j.jfa.2005.05.008
21 Gross L. Logarithmic Sobolev inequalities on Lie groups. Illinois J Math, 1992, 36: 447-490
22 Knott M, Smith C S. On the optimal mapping of distributions. J Optim Theory Appl, 1984, 43(1): 39-49
https://doi.org/10.1007/BF00934745
23 Kolesnikov A V. On Sobolev regularity of mass transport and transportation inequalities. arXiv: 1007.1103v3, 2011
24 Lassalle R. Invertibility of adapted perturbations of the identity on abstract Wiener space. J Funct Anal, 2012, 262: 2734-2776
https://doi.org/10.1016/j.jfa.2011.12.025
25 Lott J, Villani C. Ricci curvature for metric-measure spaces via optimal transport. Ann Math, 2009, 169: 903-991
https://doi.org/10.4007/annals.2009.169.903
26 Ma Y. Transportation inequalities for stochastic differential equations with jumps. Stochastic Process Appl, 2010, 120: 2-21
https://doi.org/10.1016/j.spa.2009.09.012
27 Malliavin P. Stochastic Analysis. Grundlehren Math Wiss, Vol 313. Berlin: Springer, 1997
28 Malliavin P. Hypoellipticity in infinite dimension. In: Pinsky M, ed. Diffusion Processes and Related Problems in Analysis, Vol I: Diffusions in Analysis and Geometry. Progress in Probability. Boston: Birkh?user, 2012, 17-33
29 McCann R. Polar factorization of maps on Riemannian manifolds. Geom Funct Anal, 2001, 11: 589-608
https://doi.org/10.1007/PL00001679
30 Nolot V. Convexity and problems of optimal transport maps on the Wiener space. Ph D Thesis, University of Bourgogne, 2013
31 Rachev S T, Rüschendorf L. Mass Transportation Problems. Probab Appl. New York: Springer-Verlag, 1998
32 Shao J. From the heat measure to the pinned Wiener measure on loop groups. Bull Sci Math, 2011, 135: 601-612
https://doi.org/10.1016/j.bulsci.2011.07.012
33 Sturm K T. On the geometry of metric measure spaces. Acta Math, 2006, 196: 65-131
https://doi.org/10.1007/s11511-006-0002-8
34 Sturm K T, Von Renesse M K. Transport inequalities, gradient estimates, entropy and Ricci curvature. Comm Pure Appl Math, 2005, 58: 923-940
https://doi.org/10.1002/cpa.20060
35 Tiser J. Differentiation theorem for Gaussian measures on Hilbert space. Trans Amer Math Soc, 1988, 308: 655-666
https://doi.org/10.1090/S0002-9947-1988-0951621-8
36 üstünel A S. Entropy, invertibility and variational calculus of adapted shifts on Wiener space. J Funct Anal, 2009, 257: 3655-3689
https://doi.org/10.1016/j.jfa.2009.03.015
37 üstünel A S. Variational calculation of Laplace transforms via entropy on Wiener space and applications. J Funct Anal, 2014, 267: 3058-3083
https://doi.org/10.1016/j.jfa.2014.07.006
38 Villani C. Optimal Transport, Old and New. Grundlehren Math Wiss, Vol 338. Berlin: Springer-Verlag, 2009
39 Villani C. Regularity of optimal transport and cut-locus: from non smooth analysis to geometry to smooth analysis. Discrete Contin Dyn Syst, 2011, 30: 559-571
https://doi.org/10.3934/dcds.2011.30.559
40 Wang F-Y. Probability distance inequalities on Riemannian manifolds and path spaces. J Funct Anal, 2004, 206(1): 167-190
https://doi.org/10.1016/S0022-1236(02)00100-3
41 Wang F-Y. Transportation-cost inequalities on path space over manifolds with boundary. Doc Math, 2013, 18: 297-322
[1] Jianfeng HOU,Shufei WU. Acyclic coloring of graphs without bichromatic long path[J]. Front. Math. China, 2015, 10(6): 1343-1354.
[2] Yinghui ZHANG, Haiying DENG, Mingbao SUN. Global analysis of smooth solutions to a hyperbolic-parabolic coupled system[J]. Front Math Chin, 2013, 8(6): 1437-1460.
[3] GUO Boling, HAN Yongqian. Attractors of derivative complex Ginzburg-Landau equation in unbounded domains[J]. Front. Math. China, 2007, 2(3): 383-416.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed