Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2015, Vol. 10 Issue (4) : 857-874    https://doi.org/10.1007/s11464-015-0481-z
RESEARCH ARTICLE
Laws of iterated logarithm for transient random walks in random environments
Fuqing GAO()
School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
 Download: PDF(157 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We consider laws of iterated logarithm for one-dimensional transient random walks in random environments. A quenched law of iterated logarithm is presented for transient random walks in general ergodic random environments, including independent identically distributed environments and uniformly ergodic environments.

Keywords Laws of iterated logarithm      random walk      random environment     
Corresponding Author(s): Fuqing GAO   
Issue Date: 05 June 2015
 Cite this article:   
Fuqing GAO. Laws of iterated logarithm for transient random walks in random environments[J]. Front. Math. China, 2015, 10(4): 857-874.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-015-0481-z
https://academic.hep.com.cn/fmc/EN/Y2015/V10/I4/857
1 Alili S. Asymptotic behaviour for random walks in random environments. J Appl Probab, 1999, 36: 334-349
https://doi.org/10.1239/jap/1032374457
2 Bolthausen E, Sznitman A. Ten Lectures on Random Media. DMV-Lectures, Vol 32. Basel: Birkh?uer, 2002
https://doi.org/10.1007/978-3-0348-8159-3
3 Comets F, Gantert N, Zeitouni O. Quenched, annealed and functional large deviations for one dimensional random walk in random environment. Probab Theory Related Fields, 2000, 118: 65-114
https://doi.org/10.1007/s004400000074
4 Dembo A, Zeitouni O. Large Deviation Techniques and Applications. 2nd ed. New York: Springer-Verlag, 1997
5 Goldhseid I. Simple transient random walks in one-dimensional random environment. Probab Theory Related Fields, 2007, 39: 41-64
https://doi.org/10.1007/s00440-006-0038-x
6 Goldhseid I. Linear and sub-linear growth and the CLT for hitting times of a random walk in random environment on a strip. Probab Theory Related Fields, 2008, 141: 471-511
https://doi.org/10.1007/s00440-007-0091-0
7 Greven A, den Hollander F. Large deviations for a random walk in random environment. Ann Probab, 1994, 22: 1381-1428
https://doi.org/10.1214/aop/1176988607
8 Hu Y, Shi Z. The limits of Sinai’s simple random walk in random environment. Ann Probab, 1998, 26: 1477-1521
9 Kesten H, Kozlov M V, Spitzer F. Limit law for random walk in a random environment. Compos Math, 1975, 30: 145-168
10 Kozlov M V. A random walk on a line with stochastic structure. Theory Probab Appl 1973, 18: 406-408
11 Mayer-Wolf E, Roitershtein A, Zeitouni O. Limit theorems for one-dimensional random walks in Markov random environments. Ann Inst Henri Poincaré Probab Stat, 2004, 40: 635-659
https://doi.org/10.1016/j.anihpb.2004.01.003
12 Petrov V V. Limit Theorems of Probability Theory: Sequences of Independent Random Variables. Oxford: Clarendon Press, 1995
13 Sinai Ya G. The limiting behavior of a one-dimensional random walk in a random medium. Theory Probab Appl, 1992, 27: 256-268
https://doi.org/10.1137/1127028
14 Solomon F. Random walks in a random environment. Ann Probab, 1975, 3: 1-31
https://doi.org/10.1214/aop/1176996444
15 Sznitman A S. Topics in random walks in random environment. In: School and Conference on Probability Theory, ICTP Lecture Notes Series, Trieste, 17. 2004, 203-266
16 Zeitouni O. Random walks in random environment. In: Tavaré S, Zeitouni O, eds. Lectures on Probability Theory and Statistics. Ecole d’Eté de Probabilités de Saint- Flour XXXI-2001. Lecture Notes in Math, Vol 1837. Berlin: Springer, 2004, 189-312
[1] Xiequan FAN, Haijuan HU, Quansheng LIU. Uniform Cramér moderate deviations and Berry-Esseen bounds for a supercritical branching process in a random environment[J]. Front. Math. China, 2020, 15(5): 891-914.
[2] Jingning LIU, Mei ZHANG. Critical survival barrier for branching random walk[J]. Front. Math. China, 2019, 14(6): 1259-1280.
[3] Wenming HONG, Hui YANG. Scaling limit theorem for transient random walk in random environment[J]. Front. Math. China, 2018, 13(5): 1033-1044.
[4] Wenming HONG,Hui YANG,Ke ZHOU. Scaling limit of local time of Sinai’s random walk[J]. Front. Math. China, 2015, 10(6): 1313-1324.
[5] Guangjun SHEN,Xiuwei YIN,Dongjin ZHU. Weak convergence to Rosenblatt sheet[J]. Front. Math. China, 2015, 10(4): 985-1004.
[6] Yingqiu LI,Quansheng LIU,Zhiqiang GAO,Hesong WANG. Asymptotic properties of supercritical branching processes in random environments[J]. Front. Math. China, 2014, 9(4): 737-751.
[7] Chunmao HUANG,Xingang LIANG,Quansheng LIU. Branching random walks with random environments in time[J]. Front. Math. China, 2014, 9(4): 835-842.
[8] Wenming HONG,Meijuan ZHANG,Yiqiang Q. ZHAO. Light-tailed behavior of stationary distribution for state-dependent random walks on a strip[J]. Front. Math. China, 2014, 9(4): 813-834.
[9] Changjun YU,Yuebao WANG. Tail behavior of supremum of a random walk when Cramér’s condition fails[J]. Front. Math. China, 2014, 9(2): 431-453.
[10] Zhichao SHAN, Dayue CHEN. Voter model in a random environment in ?d[J]. Front Math Chin, 2012, 7(5): 895-905.
[11] Huaming WANG. Mean and variance of first passage time of non-homogeneous random walk[J]. Front Math Chin, 2012, 7(3): 551-559.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed