Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2015, Vol. 10 Issue (6) : 1433-1447    https://doi.org/10.1007/s11464-015-0492-9
RESEARCH ARTICLE
Ruin probability in Sparre Andersen risk model with claim inter-arrival times distributed as Erlang
Guangkun SUN1,*(),Shuaiqi ZHANG2,*(),Guoxin LIU3
1. School of Science, Hebei University of Technology, Tianjin 300401, China
2. School of Economics and Commerce, Guangdong University of Technology, Guangzhou 510520, China
3. Department of Mathematics, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
 Download: PDF(141 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This article deals with the ruin probability in a Sparre Andersen risk process with the inter-claim times being Erlang distributed in the framework of piecewise deterministic Markov process (PDMP). We construct an exponential martingale by virtue of the extended generator of the PDMP to change the measure. Some results are derived for the ruin probabilities, such as the general expressions for ruin probability, Lundberg bounds, Cramér-Lundberg approximations, and finite-horizon ruin probability.

Keywords Sparre Andersen risk model      Erlang inter-claim times      ruin probability      Lundberg bound      Cramér-Lundberg approximation     
Corresponding Author(s): Guangkun SUN,Shuaiqi ZHANG   
Issue Date: 12 October 2015
 Cite this article:   
Guangkun SUN,Shuaiqi ZHANG,Guoxin LIU. Ruin probability in Sparre Andersen risk model with claim inter-arrival times distributed as Erlang[J]. Front. Math. China, 2015, 10(6): 1433-1447.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-015-0492-9
https://academic.hep.com.cn/fmc/EN/Y2015/V10/I6/1433
1 Asmussen S. Ruin Probabilities. Singapore: World Scientific, 2000
2 Cheng Y, Tang Q. Moments of the surplus before ruin and deficit at ruin in the Erlang(2) risk process. N Am Actuar J, 2003, 7: 1−12
https://doi.org/10.1080/10920277.2003.10596073
3 Dickson D C M. On a class of renewal risk process. N Am Actuar J, 1998, 2(3): 60−73
https://doi.org/10.1080/10920277.1998.10595723
4 Dickson D C M, Hipp C. Ruin probabilities for Erlang(2) risk process. Insurance Math Econom, 1998, 22(3): 251−262
https://doi.org/10.1016/S0167-6687(98)00003-1
5 Dickson D C M, Hipp C. On the time to ruin for Erlang(2) risk process. Insurance Math Econom, 2001, 29(3): 333−344
https://doi.org/10.1016/S0167-6687(01)00091-9
6 Gao H, Yin C. A perturbed risk process compounded by a geometric Brownian motion with a dividend barrier strategy. Appl Math Comput, 2008, 205(1): 454−464
https://doi.org/10.1016/j.amc.2008.08.029
7 Li S, Dickson D C M, The maximum surplus before ruin in an Erlang(n) risk process and related problems. Insurance Math Econom, 2006, 38(3): 529−539
https://doi.org/10.1016/j.insmatheco.2005.11.005
8 Li S, Garrido J. On ruin for the Erlang(n) risk process. Insurance Math Econom, 2004, 34(3): 391−408
https://doi.org/10.1016/j.insmatheco.2004.01.002
9 Rolski T, Schmidli H, Schimidt V, Teugels J, Stochastic Processes for Insurance and Finance. New York: Jhon Wiley & Sons, 1999
https://doi.org/10.1002/9780470317044
[1] Changjun YU,Yuebao WANG. Tail behavior of supremum of a random walk when Cramér’s condition fails[J]. Front. Math. China, 2014, 9(2): 431-453.
[2] Gaofeng ZONG. Finite-time ruin probability of a nonstandard compound renewal risk model with constant force of interest[J]. Front Math Chin, 2010, 5(4): 801-809.
[3] WANG Rongming, YAO Dingjun, XU Lin. Ruin problems with stochastic premium stochastic return on investments[J]. Front. Math. China, 2007, 2(3): 467-490.
[4] SU Chun, HU Zhishui, CHEN Yu, LIANG Hanying. A wide class of heavy-tailed distributions and its applications[J]. Front. Math. China, 2007, 2(2): 257-286.
[5] ZHAO Xianghua, YIN Chuancun. Ruin probability for L関y risk process compounded by geometric Brownian motion[J]. Front. Math. China, 2007, 2(2): 317-327.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed