Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2016, Vol. 11 Issue (2) : 449-460    https://doi.org/10.1007/s11464-016-0512-4
RESEARCH ARTICLE
Waring-Goldbach problems for unlike powers with almost equal variables
Meng ZHANG()
School of Mathematics, Shandong University, Jinan 250100, China
 Download: PDF(140 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We prove that almost all positive even integers n can be written as n=p22+p33+p44+p55 with |pkk-N4|N321325+? for 2≤k≤5. Moreover, it is proved that each sufficiently large odd integer N can be represented as N=p1+p22+p33+p44+p55 with |pkk-N5|N321325+?for 1≤k≤5.

Keywords Exceptional set ofWaring-Goldbach problem      exponential sum over primes in short intervals      circle method     
Corresponding Author(s): Meng ZHANG   
Issue Date: 18 April 2016
 Cite this article:   
Meng ZHANG. Waring-Goldbach problems for unlike powers with almost equal variables[J]. Front. Math. China, 2016, 11(2): 449-460.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-016-0512-4
https://academic.hep.com.cn/fmc/EN/Y2016/V11/I2/449
1 Bauer C. An improvement on a theorem of the Goldbach-Waring type. Rocky Mountain J Math, 2001, 31(4): 1–20
https://doi.org/10.1216/rmjm/1021249436
2 Bauer C. A Goldbach-Waring problem for unequal powers of primes. Rocky Mountain J Math, 2008, 38: 1073–1090
https://doi.org/10.1216/RMJ-2008-38-4-1073
3 Choi S K K, Kumchev A V. Mean values of Dirichlet polynomials and applications to linear equations with prime variables. Acta Arith, 2006, 123: 125–142
https://doi.org/10.4064/aa123-2-2
4 Kumchev A V. On Weyl sums over primes in short intervals. In: Arithmetic in Shangrila, Proceedings of the 6th China-Japan Seminar on Number Theory. Series on Number Theory and Its Applications, 9. Singapore: World Scientific, 2012, 116–131
5 Li T Y, Tang H C. On a theorem of Prachar involving prime powers. Integers, 2012,12(3): 321–344
https://doi.org/10.1515/integ.2011.097
6 Liu J Y. On Lagrange’s theorem with prime variables. Q J Math, 2003, 54(4): 453–462
https://doi.org/10.1093/qmath/hag028
7 Prachar K. Über ein Problem vom Waring-Goldbach’schen Typ. Monatsh Math, 1953, 57(1): 66–74
https://doi.org/10.1007/BF01319081
8 Prachar K. Über ein Problem vom Waring-Goldbach’schen Typ II. Monatsh Math, 1953, 57(2): 113–116
https://doi.org/10.1007/BF01299628
9 Ren X M, Tsang K M. Waring-Goldbach problems for unlike powers. Acta Math Sin (Engl Ser), 2007, 23(2): 265–280
https://doi.org/10.1007/s10114-005-0733-z
10 Ren X M, Tsang K M. Waring-Goldbach problems for unlike powers II. Acta Math Sinica (Chin Ser), 2007, 50(1): 175–182 (in Chinese)
11 Tang H C. A note on some results of Hua in short intervals. Lith Math J, 2011, 51(1): 75–81
https://doi.org/10.1007/s10986-011-9109-5
12 Yao Y J. Sums of nine almost equal prime cubes. Front Math China, 2014, 9(5): 1131–1140
https://doi.org/10.1007/s11464-014-0384-4
13 Zhao L L. On the Waring-Goldbach problem for fourth and sixth powers. Proc Lond Math Soc, 2014, 108(6): 1593–1622
https://doi.org/10.1112/plms/pdt072
14 Zhao L L. The exceptional set for sums of unlike powers of primes. Acta Math Sin (Engl Ser), 2014, 30(11): 1897–1904
https://doi.org/10.1007/s10114-014-3661-y
[1] Rui ZHANG. Slim exceptional set for sums of two squares, two cubes, and two biquadrates of primes[J]. Front. Math. China, 2019, 14(5): 1017-1035.
[2] Yuchao WANG. Values of binary linear forms at prime arguments[J]. Front. Math. China, 2015, 10(6): 1449-1459.
[3] Liqun HU. Quadratic forms connected with Fourier coefficients of Maass cusp forms[J]. Front. Math. China, 2015, 10(5): 1101-1112.
[4] Yanjun YAO. Sums of nine almost equal prime cubes[J]. Front. Math. China, 2014, 9(5): 1131-1140.
[5] Hengcai TANG, Feng ZHAO. Waring-Goldbach problem for fourth powers in short intervals[J]. Front Math Chin, 2013, 8(6): 1407-1423.
[6] Weili YAO. Estimate for exponential sums and its applications[J]. Front Math Chin, 2012, 7(4): 765-783.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed