Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2017, Vol. 12 Issue (2) : 403-416    https://doi.org/10.1007/s11464-016-0542-y
RESEARCH ARTICLE
Spectrum transformation and conservation laws of lattice potential KdV equation
Senyue LOU1,Ying SHI2,Da-jun ZHANG3()
1. Faculty of Science, Ningbo University, Ningbo 315211, China
2. School of Science, Zhejiang University of Science and Technology, Hangzhou 310023, China
3. Department of Mathematics, Shanghai University, Shanghai 200444, China
 Download: PDF(162 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Many multi-dimensional consistent discrete systems have soliton solutions with nonzero backgrounds, which brings difficulty in the investigation of integrable characteristics. In this paper, we derive infinitely many conserved quantities for the lattice potential Korteweg-de Vries equation whose solutions have nonzero backgrounds. The derivation is based on the fact that the scattering data a(z) is independent of discrete space and time and the analytic property of Jost solutions of the discrete Schrödinger spectral problem. The obtained conserved densities are asymptotic to zero when |n| (or |m|) tends to infinity. To obtain these results, we reconstruct a discrete Riccati equation by using a conformal map which transforms the upper complex plane to the inside of unit circle. Series solution to the Riccati equation is constructed based on the analytic and asymptotic properties of Jost solutions.

Keywords Conserved quantities      analytic property      conformal map      inverse scattering transform      lattice potential KdV equation     
Corresponding Author(s): Da-jun ZHANG   
Issue Date: 27 December 2016
 Cite this article:   
Senyue LOU,Ying SHI,Da-jun ZHANG. Spectrum transformation and conservation laws of lattice potential KdV equation[J]. Front. Math. China, 2017, 12(2): 403-416.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-016-0542-y
https://academic.hep.com.cn/fmc/EN/Y2017/V12/I2/403
1 Ablowitz M J, Ladik J F. Nonlinear differential-difference equations and Fourier analysis. J Math Phys, 1976, 17: 1011–1018
https://doi.org/10.1063/1.523009
2 Adler V E, Bobenko A I, Suris Y B. Classification of integrable equations on quadgraphs. The consistency approach. Comm Math Phys, 2003, 233: 513–543
https://doi.org/10.1007/s00220-002-0762-8
3 Boiti M, Pempinelli F, Prinari B, Spire A. An integrable discretization of KdV at large times. Inverse Problems, 2001, 17: 515–526
https://doi.org/10.1088/0266-5611/17/3/310
4 Bridgman T, Hereman W, Quispel G R W, van der Kamp P H. Symbolic computation of Lax pairs of partial difference equations using consistency around the cube. Found Comput Math, 2013, 13: 517–544
https://doi.org/10.1007/s10208-012-9133-9
5 Butler S. Inverse Scattering Transform Method for Lattice Equations. Ph D Thesis, University of Sydney, 2012
6 Butler S. Multidimensional inverse scattering of integrable lattice equations. Nonlinearity, 2012, 25: 1613–1634
https://doi.org/10.1088/0951-7715/25/6/1613
7 Butler S, Joshi N. An inverse scattering transform for the lattice potential KdV equation. Inverse Problems, 2010, 26: 115012
https://doi.org/10.1088/0266-5611/26/11/115012
8 Cheng J W, Zhang D J. Conservation laws of some lattice equations. Front Math China, 2013, 8: 1001–1016
https://doi.org/10.1007/s11464-013-0304-z
9 Habibullin I, Yangubaeva M. Formal diagonalization of the discrete Lax operators and construction of conserved densities and symmetries for dynamical systems. Theoret Math Phys, 2013, 177: 1655–1679
https://doi.org/10.1007/s11232-013-0125-y
10 Hietarinta J. Boussinesq-like multi-component lattice equations and multi-dimensional consistency. J Phys A, 2011, 44: 165204
https://doi.org/10.1088/1751-8113/44/16/165204
11 Hietarinta J, Zhang D J. Soliton solutions for ABS lattice equations. II. Casoratians and bilinearization. J Phys A, 2009, 42: 404006
https://doi.org/10.1088/1751-8113/42/40/404006
12 Hietarinta J, Zhang D J. Multisoliton solutions to the lattice Boussinesq equation. J Math Phys, 2010, 51: 033505
https://doi.org/10.1063/1.3280362
13 Hietarinta J, Zhang D J. Soliton taxonomy for a modification of the lattice Boussinesq equation. SIGMA Symmetry Integrability Geom Methods Appl, 2011, 7: 061
14 Levi D, Petrera M, Scimiterna C, Yamilov R. On Miura transformations and Volterratype equations associated with the Adler-Bobenko-Suris equations. SIGMA Symmetry Integrability Geom Methods Appl, 2008, 4: 077
15 Mikhailov A V, Wang J P, Xenitidis P. Recursion operators, conservation laws and integrability conditions for difference equations. Theoret Math Phys, 2011, 167: 421–443
https://doi.org/10.1007/s11232-011-0033-y
16 Nijhoff F W. Lax pair for the Adler (lattice Krichever-Novikov) system. Phys Lett A, 2002, 297: 49–58
https://doi.org/10.1016/S0375-9601(02)00287-6
17 Nijhoff F W, Atkinson J, Hietarinta J. Soliton solutions for ABS lattice equations. I. Cauchy matrix approach. J Phys A, 2009, 42: 404005
https://doi.org/10.1088/1751-8113/42/40/404005
18 Nijhoff F W, Capel H W. The discrete Korteweg-de Vries equation. Acta Appl Math, 1995, 39: 133–158
https://doi.org/10.1007/BF00994631
19 Nijhoff F W, Quispel G R W, Capel H W. Direct linearization of nonlinear differencedifference equations. Phys Lett A, 1983, 97: 125–128
https://doi.org/10.1016/0375-9601(83)90192-5
20 Nijhoff F W, Walker A J. The discrete and continuous Painlev′e VI hierarchy and the Garnier systems. Glasg Math J, 2001, 43A: 109–123
https://doi.org/10.1017/S0017089501000106
21 Novikov S, Manakov S V, Pitaevskii L P, Zakharov V E. Theory of Solitons: the Inverse Scattering Method. New York: Consult Bureau, 1984
22 Rasin A G. Infinitely many symmetries and conservation laws for quad-graph equations via the Gardner method. J Phys A, 2010, 43: 235201
https://doi.org/10.1088/1751-8113/43/23/235201
23 Rasin A G, Schiff J. Infinitely many conservation laws for the discrete KdV equation. J Phys A, 2009, 42: 175205
https://doi.org/10.1088/1751-8113/42/17/175205
24 Rasin O G, Hydon P E. Conservation laws of discrete Korteweg-de Vries equation. SIGMA Symmetry Integrability Geom Methods Appl, 2005, 1: 026
25 Rasin O G, Hydon P E. Conservation laws for integrable difference equations. J Phys A, 2007, 40: 12763–12773
https://doi.org/10.1088/1751-8113/40/42/S19
26 Xenitidis P, Nijhoff F W. Symmetries and conservation laws of lattice Boussinesq equations. Phys Lett A, 2012, 376: 2394–2401
https://doi.org/10.1016/j.physleta.2012.06.004
27 Xenitidis P. Symmetries and conservation laws of the ABS equations and corresponding differential-difference equations of Volterra type. J Phys A, 2011, 44: 435201
https://doi.org/10.1088/1751-8113/44/43/435201
28 Zakharov V, Shabat A. Exact theory of two-dimensional self-focusing and onedimensional self-modulation of waves in nonlinear media. Sov Phys JETP, 1972, 34: 62–69
29 Zhang D J, Cheng J W, Sun Y Y. Deriving conservation laws for ABS lattice equations from Lax pairs. J Phys A, 2013, 46: 265202
https://doi.org/10.1088/1751-8113/46/26/265202
30 Zhang D J, Zhao S L, Nijhoff F W. Direct linearization of an extended lattice BSQ system. Stud Appl Math, 2012, 129: 220–248
https://doi.org/10.1111/j.1467-9590.2012.00552.x
[1] Junyi ZHU, Xinxin MA, Zhijun QIAO. Spectral analysis of generalized Volterra equation[J]. Front. Math. China, 2019, 14(5): 1063-1075.
[2] Hideshi YAMANE. Asymptotic behavior of solutions of defocusing integrable discrete nonlinear Schr?dinger equation[J]. Front Math Chin, 2013, 8(5): 1077-1083.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed