Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2016, Vol. 11 Issue (4) : 765-814    https://doi.org/10.1007/s11464-016-0548-5
SURVEY ARTICLE
Representation theory of Dynkin quivers. Three contributions
Claus Michael RINGEL1,2,*()
1. Fakultät für Mathematik, Universität Bielefeld, P. O. Box 100 131, D-33501 Bielefeld, Germany
2. Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China
 Download: PDF(327 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The representations of the Dynkin quivers and the corresponding Euclidean quivers are treated in many books. These notes provide three building blocks for dealing with representations of Dynkin (and Euclidean) quivers. They should be helpful as part of a direct approach to study represen-tations of quivers, and they shed some new light on properties of Dynkin and Euclidean quivers.

Keywords Quiver      Dynkin quiver      Euclidean quiver      the exceptional vertices of a Dynkin quiver      representations of quivers      thin representations      filtrations of vector spaces      conical representations of star quivers      Auslander-Reiten quiver      thick subcategories      perpendicular subcategories      one-point extension      antichains of a poset      antichains of an additive category      simplifi-cation      hammocks      the 2-4-8 property      the magic Freudenthal-Tits square     
Corresponding Author(s): Claus Michael RINGEL   
Issue Date: 30 August 2016
 Cite this article:   
Claus Michael RINGEL. Representation theory of Dynkin quivers. Three contributions[J]. Front. Math. China, 2016, 11(4): 765-814.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-016-0548-5
https://academic.hep.com.cn/fmc/EN/Y2016/V11/I4/765
1 Adams J F. Finite H-spaces and Lie groups. J Pure Appl Algebra, 1980, 19: 1–8
https://doi.org/10.1016/0022-4049(80)90089-4
2 Auslander M. Representation theory of artin algebras II. Comm Algebra, 1974, 1(4): 269–310
https://doi.org/10.1080/00927877409412807
3 Auslander M, Reiten I, SmaløS S. Representation Theory of Artin Algebras. Cambridge Stud Adv Math, Vol 36. Cambridge: Cambridge University Press, 1997
4 Bäckström K J. Orders with finitely many indecomposable lattices. Ph D Thesis, Göteborg, 1972
5 Bernstein I N, Gelfand I M, Ponomarev V A. Coxeter functors, and Gabriel's theorem. Russian Math Surveys, 1973, 28(2): 17–32
https://doi.org/10.1070/RM1973v028n02ABEH001526
6 Brenner S. A combinatorial characterization of finite Auslander-Reiten quivers. In: Representation Theory I: Finite Dimensional Algebras. Lecture Notes in Math, Vol 1177. Berlin: Springer, 1986, 13–49
https://doi.org/10.1007/BFb0075256
7 Dlab V, Ringel C M. Indecomposable Representations of Graphs and Algebras. Mem Amer Math Soc, No 173. Providence: Amer Math Soc, 1976
8 Donovan P, Freislich M R. The Representation Theory of Finite Graphs and Associated Algebras. Carleton Math Lecture Notes, No 5. 1973
9 Freudenthal H. Lie groups in the foundations of geometry. Adv Math, 1964, 1: 145–190
https://doi.org/10.1016/0001-8708(65)90038-1
10 Gabriel P. Unzerlegbare Darstellungen I. Manuscripta Math, 1972, 6: 71–103
https://doi.org/10.1007/BF01298413
11 Gabriel P. Auslander-Reiten sequences and representation-finite algebras. In: Representation Theory I. Lecture Notes in Math, Vol 831. Berlin: Springer, 1980, 72–103
https://doi.org/10.1007/bfb0089778
12 Gelfand I M, Ponomarev V A. Problems of linear algebra and classification of quadruples of subspaces in a finite-dimensional vector space. In: Coll Math Soc Janos Bolyai 5. Hilbert Space Operators. Tihany, Hungary, 1970, 163–237
13 Kleiner M M. On exact representations of partially ordered sets of finite type. Zap Naučn Sem LOMI, 1972, 28: 42–60
14 Krause H. Crawley-Boevey wird Humboldt-Professor in Bielefeld. Mitteilungen der DMV, 2016, 24(2): 80–84
https://doi.org/10.1515/dmvm-2016-0034
15 Nazarova L A. Representations of quivers of infinite type. Izv Akad Nauk SSSR, Ser Mat, 1973, 37: 752–791
16 Ringel C M. Representations of K-species and bimodules. J Algebra, 1976, 41: 269–302
https://doi.org/10.1016/0021-8693(76)90184-8
17 Ringel C M. Tame algebras. In: Representation Theory I. Lecture Notes in Math, Vol 831. Berlin: Springer, 1980, 137–287
https://doi.org/10.1007/BFb0089781
18 Ringel C M. Bricks in hereditary length categories. Resultate der Math, 1983, 6: 64–70
https://doi.org/10.1007/BF03323325
19 Ringel C M. Tame Algebras and Integral Quadratic Forms. Lecture Notes in Math, Vol 1099. Berlin: Springer, 1984
https://doi.org/10.1007/BFb0072870
20 Ringel C M. Hall algebras and quantum groups. Invent Math, 1990, 101: 583–592
https://doi.org/10.1007/BF01231516
21 Ringel C M. The braid group operation on the set of exceptional sequences of a hereditary category. In: Gobel R, Hill P, Liebert W, eds. Abelian Group Theory and Related Topics. Contemp Math, No 171. Providence: Amer Math Soc, 1994, 339–352
https://doi.org/10.1090/conm/171/01786
22 Ringel C M. Distinguished bases of exceptional modules. In: Algebras, Quivers and Representations. Proceedings of the Abel Symposium 2011. Abel Symposia, Vol 8. Berlin: Springer, 2013, 253–274
https://doi.org/10.1007/978-3-642-39485-0_11
23 Ringel C M. The Catalan combinatorics of the hereditary artin algebras. In: Recent Developments in Representation Theory. Contemp Math, Vol 673. Providence: Amer Math Soc, 2016 (to appear)
24 Ringel C M, Vossieck D. Hammocks. Proc Lond Math Soc (3), 1987, 54: 216–246
25 Tachikawa H. Quasi-Frobenius Rings and Generalizations. Lecture Notes in Math, Vol 351. Berlin: Springer, 1973
26 Tits J. Algebres alternatives, algebres de Jordan et algebres de Lie exceptionnelles, Indag Math, 1966, 28, 223–237
https://doi.org/10.1016/S1385-7258(66)50028-2
27 Vinberg E B. A construction of exceptional simple Lie groups. Tr Semin Vektorn Tensorn Anal, 1966, 13: 7–9 (in Russian)
28 Yoshii T. On algebras of bounded representation type. Osaka Math J, 1956, 8: 51–105
https://doi.org/10.3792/pja/1195525312
[1] Xiaoshan QIN, Yanhua WANG, James ZHANG. Maximal Cohen-Macaulay modules over a noncommutative 2-dimensional singularity[J]. Front. Math. China, 2019, 14(5): 923-940.
[2] Fang LI,Lingyu WAN. On duality preservability of Auslander-Reiten quivers of derived categories and cluster categories[J]. Front. Math. China, 2016, 11(4): 957-984.
[3] Xuerong FU,Hailou YAO. On Gorenstein coalgebras[J]. Front. Math. China, 2016, 11(4): 845-867.
[4] Fang LI,Yichao YANG. A relation between tilting graphs and cluster-tilting graphs of hereditary algebras[J]. Front. Math. China, 2015, 10(2): 275-291.
[5] Gabriel NAVARRO. Valued Gabriel quiver of a wedge product and semiprime coalgebras[J]. Front Math Chin, 2013, 8(5): 1157-1183.
[6] Hailou YAO, Weili FAN, Yanru PING. (*)-Serial coalgebras[J]. Front Math Chin, 2012, 7(5): 955-970.
[7] Ming DING, Fan XU. Cluster characters for cyclic quivers[J]. Front Math Chin, 2012, 7(4): 679-693.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed