|
|
|
Representation theory of Dynkin quivers. Three contributions |
Claus Michael RINGEL1,2,*( ) |
1. Fakultät für Mathematik, Universität Bielefeld, P. O. Box 100 131, D-33501 Bielefeld, Germany 2. Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China |
|
| 1 |
Adams J F. Finite H-spaces and Lie groups. J Pure Appl Algebra, 1980, 19: 1–8
https://doi.org/10.1016/0022-4049(80)90089-4
|
| 2 |
Auslander M. Representation theory of artin algebras II. Comm Algebra, 1974, 1(4): 269–310
https://doi.org/10.1080/00927877409412807
|
| 3 |
Auslander M, Reiten I, SmaløS S. Representation Theory of Artin Algebras. Cambridge Stud Adv Math, Vol 36. Cambridge: Cambridge University Press, 1997
|
| 4 |
Bäckström K J. Orders with finitely many indecomposable lattices. Ph D Thesis, Göteborg, 1972
|
| 5 |
Bernstein I N, Gelfand I M, Ponomarev V A. Coxeter functors, and Gabriel's theorem. Russian Math Surveys, 1973, 28(2): 17–32
https://doi.org/10.1070/RM1973v028n02ABEH001526
|
| 6 |
Brenner S. A combinatorial characterization of finite Auslander-Reiten quivers. In: Representation Theory I: Finite Dimensional Algebras. Lecture Notes in Math, Vol 1177. Berlin: Springer, 1986, 13–49
https://doi.org/10.1007/BFb0075256
|
| 7 |
Dlab V, Ringel C M. Indecomposable Representations of Graphs and Algebras. Mem Amer Math Soc, No 173. Providence: Amer Math Soc, 1976
|
| 8 |
Donovan P, Freislich M R. The Representation Theory of Finite Graphs and Associated Algebras. Carleton Math Lecture Notes, No 5. 1973
|
| 9 |
Freudenthal H. Lie groups in the foundations of geometry. Adv Math, 1964, 1: 145–190
https://doi.org/10.1016/0001-8708(65)90038-1
|
| 10 |
Gabriel P. Unzerlegbare Darstellungen I. Manuscripta Math, 1972, 6: 71–103
https://doi.org/10.1007/BF01298413
|
| 11 |
Gabriel P. Auslander-Reiten sequences and representation-finite algebras. In: Representation Theory I. Lecture Notes in Math, Vol 831. Berlin: Springer, 1980, 72–103
https://doi.org/10.1007/bfb0089778
|
| 12 |
Gelfand I M, Ponomarev V A. Problems of linear algebra and classification of quadruples of subspaces in a finite-dimensional vector space. In: Coll Math Soc Janos Bolyai 5. Hilbert Space Operators. Tihany, Hungary, 1970, 163–237
|
| 13 |
Kleiner M M. On exact representations of partially ordered sets of finite type. Zap Naučn Sem LOMI, 1972, 28: 42–60
|
| 14 |
Krause H. Crawley-Boevey wird Humboldt-Professor in Bielefeld. Mitteilungen der DMV, 2016, 24(2): 80–84
https://doi.org/10.1515/dmvm-2016-0034
|
| 15 |
Nazarova L A. Representations of quivers of infinite type. Izv Akad Nauk SSSR, Ser Mat, 1973, 37: 752–791
|
| 16 |
Ringel C M. Representations of K-species and bimodules. J Algebra, 1976, 41: 269–302
https://doi.org/10.1016/0021-8693(76)90184-8
|
| 17 |
Ringel C M. Tame algebras. In: Representation Theory I. Lecture Notes in Math, Vol 831. Berlin: Springer, 1980, 137–287
https://doi.org/10.1007/BFb0089781
|
| 18 |
Ringel C M. Bricks in hereditary length categories. Resultate der Math, 1983, 6: 64–70
https://doi.org/10.1007/BF03323325
|
| 19 |
Ringel C M. Tame Algebras and Integral Quadratic Forms. Lecture Notes in Math, Vol 1099. Berlin: Springer, 1984
https://doi.org/10.1007/BFb0072870
|
| 20 |
Ringel C M. Hall algebras and quantum groups. Invent Math, 1990, 101: 583–592
https://doi.org/10.1007/BF01231516
|
| 21 |
Ringel C M. The braid group operation on the set of exceptional sequences of a hereditary category. In: Gobel R, Hill P, Liebert W, eds. Abelian Group Theory and Related Topics. Contemp Math, No 171. Providence: Amer Math Soc, 1994, 339–352
https://doi.org/10.1090/conm/171/01786
|
| 22 |
Ringel C M. Distinguished bases of exceptional modules. In: Algebras, Quivers and Representations. Proceedings of the Abel Symposium 2011. Abel Symposia, Vol 8. Berlin: Springer, 2013, 253–274
https://doi.org/10.1007/978-3-642-39485-0_11
|
| 23 |
Ringel C M. The Catalan combinatorics of the hereditary artin algebras. In: Recent Developments in Representation Theory. Contemp Math, Vol 673. Providence: Amer Math Soc, 2016 (to appear)
|
| 24 |
Ringel C M, Vossieck D. Hammocks. Proc Lond Math Soc (3), 1987, 54: 216–246
|
| 25 |
Tachikawa H. Quasi-Frobenius Rings and Generalizations. Lecture Notes in Math, Vol 351. Berlin: Springer, 1973
|
| 26 |
Tits J. Algebres alternatives, algebres de Jordan et algebres de Lie exceptionnelles, Indag Math, 1966, 28, 223–237
https://doi.org/10.1016/S1385-7258(66)50028-2
|
| 27 |
Vinberg E B. A construction of exceptional simple Lie groups. Tr Semin Vektorn Tensorn Anal, 1966, 13: 7–9 (in Russian)
|
| 28 |
Yoshii T. On algebras of bounded representation type. Osaka Math J, 1956, 8: 51–105
https://doi.org/10.3792/pja/1195525312
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|