| 1 |
Alonso J M, Wang X, Pride S J. Higher-dimensional isoperimetric (or Dehn) functions of groups. J Group Theory, 1999, 2(1): 81–112
|
| 2 |
Bridson M R. On the geometry of normal forms in discrete groups. Proc Lond Math Soc (3), 1993, 67(3): 596–616
|
| 3 |
Burillo J. Lower bounds of isoperimetric functions for nilpotent groups. In: Geometric and Computational Perspectives on Infinite Groups (Minneapolis, MN and New Brunswick, NJ, 1994). DIMACS Ser Discrete Math Theoret Comput Sci, Vol 25. Providence: Amer Math Soc, 1996, 1–8
|
| 4 |
Burillo J, Taback J. Equivalence of geometric and combinatorial Dehn functions. New York J Math, 2002, 8: 169–179 (electronic)
|
| 5 |
Epstein D B A, Cannon J W, Holt D F, Levy S V F, Paterson M S, Thurston W P. Word Processing in Groups. Boston: Jones and Bartlett Publishers, 1992
|
| 6 |
Federer H, Fleming W H. Normal and integral currents. Ann of Math (2), 1960, 72: 458–520
|
| 7 |
Gersten S M. Isoperimetric and isodiametric functions of finite presentations. In: Geometric Group Theory, Vol 1 (Sussex, 1991). London Math Soc Lecture Note Ser, Vol 181. Cambridge: Cambridge Univ Press, 1993, 79–96
https://doi.org/10.1017/cbo9780511661860.008
|
| 8 |
Gromov M. Filling Riemannian manifolds. J Differential Geom, 1983, 18(1): 1–147
|
| 9 |
Gromov M. Metric Structures for Riemannian and Non-Riemannian Spaces. Progr Math, Vol 152. Boston: Birkhäuser, 1999
|
| 10 |
Gruber M. Large Scale Geometry of Stratified Nilpotent Lie Groups (in preparation)
|
| 11 |
Korányi A, Ricci F. A classification-free construction of rank-one symmetric spaces. Bull Kerala Math Assoc, 2005, (Special Issue): 73–88 (2007)
|
| 12 |
Leuzinger E. Optimal higher-dimensional Dehn functions for some CAT(0) lattices. Groups Geom Dyn, 2014, 8(2): 441–466
https://doi.org/10.4171/GGD/233
|
| 13 |
Leuzinger E, Pittet C. On quadratic Dehn functions. Math Z, 2004, 248(4): 725–755
https://doi.org/10.1007/s00209-004-0678-4
|
| 14 |
Niblo G A, Roller M A, eds. Geometric Group Theory, Vol 2. London Math Soc Lecture Note Ser, Vol 182. Cambridge: Cambridge Univ Press, 1993
|
| 15 |
Pittet C. Isoperimetric inequalities for homogeneous nilpotent groups. In: Geometric Group Theory (Columbus, OH, 1992). Ohio State Univ Math Res Inst Publ, Vol 3. Berlin: de Gruyter, 1995, 159–164
https://doi.org/10.1515/9783110810820.159
|
| 16 |
Pittet C. Isoperimetric inequalities in nilpotent groups. J Lond Math Soc (2), 1997, 55(3): 588–600
|
| 17 |
Raghunathan M S. Discrete Subgroups of Lie Groups. Ergeb Math Grenzgeb, Band 68. New York-Heidelberg: Springer-Verlag, 1972
https://doi.org/10.1007/978-3-642-86426-1
|
| 18 |
Varopoulos N Th, Saloff-Coste L, Coulhon T. Analysis and Geometry on Groups. Cambridge Tracts in Math, Vol 100. Cambridge: Cambridge Univ Press, 1992
|
| 19 |
Wenger S. A short proof of Gromov’s filling inequality. Proc Amer Math Soc, 2008, 136(8): 2937–2941
https://doi.org/10.1090/S0002-9939-08-09203-4
|
| 20 |
Wenger S. Nilpotent groups without exactly polynomial Dehn function. J Topol, 2011, 4(1): 141–160
https://doi.org/10.1112/jtopol/jtq038
|
| 21 |
Wolf J A. Curvature in nilpotent Lie groups. Proc Amer Math Soc, 1964, 15: 271–274
https://doi.org/10.1090/S0002-9939-1964-0162206-7
|
| 22 |
Young R. High-dimensional fillings in Heisenberg groups. 2010, arXiv: 1006.1636v2
|
| 23 |
Young R. Homological and homotopical higher-order filling functions. Groups Geom Dyn, 2011, 5(3): 683–690
https://doi.org/10.4171/GGD/144
|
| 24 |
Young R. Filling inequalities for nilpotent groups through approximations. Groups Geom Dyn, 2013, 7(4): 977–1011
https://doi.org/10.4171/GGD/213
|