Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2016, Vol. 11 Issue (5) : 1099-1122    https://doi.org/10.1007/s11464-016-0580-5
SURVEY ARTICLE
Positive curvature, symmetry, and topology
Manuel AMANN()
Fakultät für Mathematik, Institut für Algebra und Geometrie, Karlsruher Institut für Technologie, Englerstraβe 2, 76131 Karlsruhe, Germany
 Download: PDF(242 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We depict recent developments in the field of positive sectional curvature, mainly, but not exclusively, under the assumption of isometric torus actions. After an elaborate introduction to the field, we shall discuss various classification results, before we provide results on the computation of Euler characteristics. This will be the starting point for an examination of more involved invariants and further techniques. In particular, we shall discuss the Hopf conjectures, related decomposition results like the Wilhelm conjecture, results in differential topology and index theory as well as in rational homotopy theory, geometrically formal metrics in positive curvature and much more. The results we present will be discussed for arbitrary dimensions, but also specified to small dimensions. This survey article features mainly depictions of our own work interest in this area and cites results obtained in different collaborations; full statements and proofs can be found in the respective original research articles.

Keywords Positive sectional curvature      torus actions      Euler characteristic      Hopf conjecture      index theory      Wilhelm conjecture      geometric formality     
Corresponding Author(s): Manuel AMANN   
Issue Date: 23 September 2016
 Cite this article:   
Manuel AMANN. Positive curvature, symmetry, and topology[J]. Front. Math. China, 2016, 11(5): 1099-1122.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-016-0580-5
https://academic.hep.com.cn/fmc/EN/Y2016/V11/I5/1099
1 Amann M. Non-formal homogeneous spaces. Math Z, 2013, 274(3-4): 1299–1325
https://doi.org/10.1007/s00209-012-1117-6
2 Amann M, Kennard L. On a generalized conjecture of Hopf with symmetry. 2014, arXiv: 1402.7255
3 Amann M, Kennard L.Topological properties of positively curved manifolds with symmetry. Geom Funct Anal, 2014, 24(5): 1377–1405
https://doi.org/10.1007/s00039-014-0300-9
4 Amann M, Kennard L.Positive curvature and rational ellipticity. Algebr Geom Topol, 2015, 15(4): 2269–2301
https://doi.org/10.2140/agt.2015.15.2269
5 Amann M, Kennard L. Positive curvature and torus symmetry in small dimensions, I—Dimensions 10, 12, 14, and 16. 2015, arXiv: 1512.01302
6 Amann M, Kennard L. Positive curvature and torus symmetry in small dimensions, II. Preprint, 2016
7 Amann M, Kennard L. Generalizations of the Hopf conjecture with symmetry. Preprint, 2016
8 Amann M, Ziller W. Geometrically formal homogeneous metrics of positive curvature. J Geom Anal (to appear), arXiv: 1407.6201
9 Bär C. Geometrically formal 4-manifolds with nonnegative sectional curvature. 2012, arXiv: 1212.1325v2
10 Berard-Bergery L. Les variétés riemanniennes homogènes simplement connexes dedimension impaire à courbure strictement positive. J Math Pures Appl (9), 1976, 55(1): 47–67
12 Berger M. Trois remarques sur les variétés riemanniennes à courbure positive. C R Math Acad Sci Paris, 1966, 263: A76–A78
13 Breuillard E, Green B, Tao T.The structure of approximate groups. Publ Math Inst Hautes ′Etudes Sci, 2012, 116(1): 115–221
14 Chen X Y. Curvature and Riemannian Submersions. Ph D Thesis. Univ of Notre Dame, 2014
15 Conner P E. On the action of the circle group. Michigan Math J, 1957, 4: 241–247
https://doi.org/10.1307/mmj/1028997955
16 Dearricott O. A 7-manifold with positive curvature. Duke Math J, 2011, 158(2): 307–346
https://doi.org/10.1215/00127094-1334022
17 Dessai A. Topology of positively curved 8-dimensional manifolds with symmetry. Pacific J Math, 2011, 249(1): 23–47
https://doi.org/10.2140/pjm.2011.249.23
18 Fang F Q, Rong X C. Homeomorphism classification of positively curved manifolds with almost maximal symmetry rank. Math Ann, 2005, 332: 81–101
https://doi.org/10.1007/s00208-004-0618-y
19 F′elix Y, Halperin S, Thomas J-C. Rational Homotopy Theory. Grad Texts in Math, Vol 205. New York: Springer-Verlag, 2001
20 Florit L A, Ziller W. Topological obstructions to fatness. Geom Topol, 2011, 15(2): 891–925
https://doi.org/10.2140/gt.2011.15.891
21 Frankel T. Manifolds with positive curvature. Pacific J Math, 1961, 11: 165–174
https://doi.org/10.2140/pjm.1961.11.165
22 González D, Guijarro L. Soft restrictions on positively curved Riemannian submersions. 2015, arXiv: 1501.01813
23 Grosjean J-F, Nagy P-A. On the cohomology algebra of some classes of geometrically formal manifolds. Proc Lond Math Soc (3), 2009, 98(3): 607–630
24 Grove K, Halperin S. Dupin hypersurfaces, group actions and the double mapping cylinder. J Differential Geom, 1987, 26(3): 429–459
25 Grove K, Searle C. Positively curved manifolds with maximal symmetry-rank. J Pure Appl Algebra, 1994, 91(1-3): 137–142
https://doi.org/10.1016/0022-4049(94)90138-4
26 Grove K, Verdiani L, Ziller W. An exotic T1S4 with positive curvature. Geom Funct Anal, 2011, 21(3): 499–524
https://doi.org/10.1007/s00039-011-0117-8
27 Grove K, Wilking B. A knot characterization and 1-connected nonnegatively curved 4-manifolds with circle symmetry. Geom Topol, 2014, 18(5): 3091–3110
https://doi.org/10.2140/gt.2014.18.3091
28 Hirzebruch F, Berger T, Jung R. Manifolds and Modular Forms. Aspects of Mathematics, E20. Braunschweig Friedr Vieweg & Sohn, 1992
https://doi.org/10.1007/978-3-663-14045-0
29 Hirzebruch F, Slodowy P. Elliptic genera, involutions, and homogeneous spin manifolds. Geom Dedicata, 1990, 35(1-3): 309–343
https://doi.org/10.1007/BF00147351
30 Hsiang W Y, Kleiner B. On the topology of positively curved 4-manifolds with symmetry. J Differential Geom, 1989, 30: 615–621
31 Kapovitch V, Petrunin A, Tuschmann W. Nilpotency, almost nonnegative curvature, and the gradient flow on Alexandrov spaces. Ann of Math (2), 2010, 171(1): 343–373
32 Kapovitch V, Wilking B. Structure of fundamental groups of manifolds with Ricci curvature bounded below. 2012, arXiv: 1105.5955v2
33 Kapovitch V, Ziller W. Biquotients with singly generated rational cohomology. Geom Dedicata, 2004, 104: 149–160
https://doi.org/10.1023/B:GEOM.0000022860.89824.2f
34 Kennard L. On the Hopf conjecture with symmetry. Geom Topol, 2013, 17(1): 563–593
https://doi.org/10.2140/gt.2013.17.563
35 Kennard L.Positively curved Riemannian metrics with logarithmic symmetry rank bounds. Comment Math Helv, 2014, 89(4): 937–962
https://doi.org/10.4171/CMH/340
36 Kerin M. Some new examples with almost positive curvature. Geom Topol, 2011, 15(1): 217–260
https://doi.org/10.2140/gt.2011.15.217
37 Kobayashi S. Fixed points of isometries. Nagoya Math J, 1958, 13: 63–68
https://doi.org/10.1017/S0027763000023497
38 Kotschick D. On products of harmonic forms. Duke Math J, 2001, 107(3): 521–531
https://doi.org/10.1215/S0012-7094-01-10734-5
39 Kotschick D. Geometric formality and non-negative scalar curvature. 2012, arXiv: 1212.3317v4
40 Kotschick D, Terzić S. On formality of generalized symmetric spaces. Math Proc Cambridge Philos Soc, 2003, 134(3): 491–505
https://doi.org/10.1017/S0305004102006540
41 Kotschick D, Terzić S. Chern numbers and the geometry of partial flag manifolds. Comment Math Helv, 2009, 84(3): 587–616
https://doi.org/10.4171/CMH/174
42 Kotschick D, Terzić S.Geometric formality of homogeneous spaces and of biquotients. Pacific J Math, 2011, 249(1): 157–176
https://doi.org/10.2140/pjm.2011.249.157
43 Kramer L. Homogeneous spaces, Tits buildings, and isoparametric hypersurfaces. Mem Amer Math Soc, Vol 158, No 752. Providence: Amer Math Soc, 2002
44 Ornea L, Pilca M. Remarks on the product of harmonic forms. Pacific J Math, 2011, 250(2): 353–363
https://doi.org/10.2140/pjm.2011.250.353
45 Petersen P, Wilhelm F. An exotic sphere with positive sectional curvature. 2008, arXiv: 0805.0812v3
46 Prasad G, Yeung S-K. Arithmetic fake projective spaces and arithmetic fake Grassmannians. Amer J Math, 2009, 131(2): 379–407
https://doi.org/10.1353/ajm.0.0043
47 Püttmann T, Searle C. The Hopf conjecture for manifolds with low cohomogeneity or high symmetry rank. author Proc Amer Math Soc, 2001, 130(1): 163–166
https://doi.org/10.1090/S0002-9939-01-06039-7
48 Rong X C. Positively curved manifolds with almost maximal symmetry rank. Geom Dedicata, 2002, 95(1): 157–182
https://doi.org/10.1023/A:1021242512463
49 Rong X C, Su X L. The Hopf conjecture for manifolds with abelian group actions. Commun Contemp Math, 2005, 7: 121–136
https://doi.org/10.1142/S0219199705001660
50 Su Z X. Rational analogs of projective planes. Algebr Geom Topol, 2014, 14: 421–438
https://doi.org/10.2140/agt.2014.14.421
51 Wallach N R. Compact homogeneous Riemannian manifolds with strictly positive curvature. Ann of Math (2), 1972, 96: 277–295
52 Walschap G. Soul-preserving submersions. Michigan Math J, 1994, 41(3): 609–617
https://doi.org/10.1307/mmj/1029005083
53 Weisskopf N. Positive curvature and the elliptic genus. 2013, arXiv: 1305.5175v1
54 Wilking B. Torus actions on manifolds of positive sectional curvature. Acta Math, 2003, 191(2): 259–297
https://doi.org/10.1007/BF02392966
55 Ziller W. Examples of Riemannian manifolds with non-negative sectional curvature. 2007, arXiv: math/0701389v3
56 Ziller W. Riemannian manifolds with positive sectional curvature. 2012, arXiv: 1210.4102v1
[1] Xiaole SU, Hongwei SUN, Yusheng WANG. An isometrical CPn-theorem[J]. Front. Math. China, 2018, 13(2): 367-398.
[2] Stephan KLAUS. On combinatorial Gauss-Bonnet Theorem for general Euclidean simplicial complexes[J]. Front. Math. China, 2016, 11(5): 1345-1362.
[3] Anand DESSAI. Torus actions, fixed-point formulas, elliptic genera and positive curvature[J]. Front. Math. China, 2016, 11(5): 1151-1187.
[4] Jing LIU, Chunhua OU. How many consumer levels can survive in a chemotactic food chain?[J]. Front Math Chin, 2009, 4(3): 495-521.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed