Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2017, Vol. 12 Issue (1) : 35-49    https://doi.org/10.1007/s11464-016-0587-y
RESEARCH ARTICLE
Integral domains with finitely many spectral semistar operations
Gyu Whan CHANG1,Dong Yeol OH2()
1. Department of Mathematics Education, Incheon National University, Incheon 22012, Republic of Korea
2. Department of Mathematics Education, Chosun University, Gwangju 61452, Republic of Korea
 Download: PDF(221 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Let D be a finite-dimensional integral domain, Spec(D) be the set of prime ideals of D, and SpSS(D) be the set of spectral semistar operations on D. Mimouni gave a complete description for the prime ideal structure of D with |SpSS(D)| = n + dim(D) for 1≤n≤5 except for the quasi-local cases of n = 4, 5. In this paper, we show that there is an integral domain D such that |SpSS(D)| = n+dim(D) for all positive integers n with n ≠2. As corollaries, we completely characterize the quasi-local domains D with |SpSS(D)| = n+dim(D) for n = 4, 5. Furthermore, we also present the lower and upper bounds of |SpSS(D)| when Spec(D) is a finite tree.

Keywords (Spectral) semistar operation      prime spectrum      (Krull) dimension     
Corresponding Author(s): Dong Yeol OH   
Issue Date: 17 November 2016
 Cite this article:   
Gyu Whan CHANG,Dong Yeol OH. Integral domains with finitely many spectral semistar operations[J]. Front. Math. China, 2017, 12(1): 35-49.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-016-0587-y
https://academic.hep.com.cn/fmc/EN/Y2017/V12/I1/35
1 Chang G W. On the cardinality of stable star operations of finite type on an integral domain. C R Math Acad Sci Paris, 2012, 350: 557–560
https://doi.org/10.1016/j.crma.2012.05.015
2 Finocchiaro C A, Fontana M, Spirito D. New distinguished classes of spectral spaces: a survey. arXiv: 1510.04443
3 Fontana M, Huckaba J. Localizing systems and semistar operations. In: Non-Noetherian Commutative Ring Theory. Math Appl, Vol 520. Dordredt: Kluwer Acad, 2000, 169–197
https://doi.org/10.1007/978-1-4757-3180-4_8
4 Fontana M, Loper K. Nagata rings, Kronecker function rings, and related semistar operations. Comm Algebra, 2003, 31: 4775–4805
https://doi.org/10.1081/AGB-120023132
5 Gilmer R. Multiplicative Ideal Theory. Queen’s Papers in Pure and Appl Math, Vol 90. Queen’s University, Kingston, Ontario, Canada, 1992
6 Lewis W J. The spectrum of a ring as a partially ordered set. J Algebra, 1973: 25: 419–434
https://doi.org/10.1016/0021-8693(73)90091-4
7 Mimouni A. Semistar-operations of finite character on integral domains. J Pure Appl Algebra, 2005, 200: 37–50
https://doi.org/10.1016/j.jpaa.2004.12.019
8 Mimouni A. On the prime spectrum of an integral domains with finite spectral semistar operations. Algebra Colloq, 2011, 18: 965–972
https://doi.org/10.1142/S1005386711000848
9 Okabe A, Matsuda R. Semistar operations on integral domains. Math J Toyama Univ, 1994, 17: 1–21
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed