|
|
|
A class of metrics and foliations on tangent bundle of Finsler manifolds |
Hongchuan XIA1( ),Chunping ZHONG2 |
1. College of Mathematics and Statistics, Xinyang Normal University, Xinyang 464000, China 2. School of Mathematical Sciences, Xiamen University, Xiamen 361005, China |
|
|
|
|
Abstract Let (M,F) be a Finsler manifold, and let TM0 be the slit tangent bundle of M with a generalized Riemannian metric G, which is induced by F. In this paper, we extract many natural foliations of (TM0,G) and study their geometric properties. Next, we use this approach to obtain new characterizations of Finsler manifolds with positive constant flag curvature. We also investigate the relations between Levi-Civita connection, Cartan connection, Vaisman connection, vertical foliation, and Reinhart spaces.
|
| Keywords
Finsler manifold
foliation
constant flag curvature
Vaisman connection
|
|
Corresponding Author(s):
Hongchuan XIA
|
|
Issue Date: 27 December 2016
|
|
| 1 |
Alipour-Fakhri Y, Rezaii M M. The warped Sasaki-Matsumoto metric and bundlelike condition. J Math Phys, 2010, 51(12): 122701
https://doi.org/10.1063/1.3520636
|
| 2 |
Anastasiei M, Shimada H. Deformation of Finsler metrics. In: Antonelli P L, ed. Finslerian Geometries—A meetings of Minds. Dordrecht-Boston-London: Kluwer Academic Publishers, 2000, 53–66
https://doi.org/10.1007/978-94-011-4235-9_6
|
| 3 |
Attarchi H, Rezaii M M. Cartan spaces and natural foliations on the cotangent bundle. Int J Geom Methods Mod Phys, 2013, 10(3): 1250089
https://doi.org/10.1142/S0219887812500892
|
| 4 |
Balan V, Manea A. Leafwise 2-jet cohomology on foliated Finsler manifolds. In: Balkan Society of Geometries Proceeding, Vol 16. Bucharest: Geometry Balkan Press, 2009, 28–41
|
| 5 |
Bao D, Chern S S, Shen Z M. An Introduction to Riemann-Finsler Geometry. Grad Texts in Math, Vol 200. New York: Springer-Verlag, 2000
https://doi.org/10.1007/978-1-4612-1268-3
|
| 6 |
Bejancu A. Tangent bundle and indicatrix bundle of a Finsler manifold. Kodai Math J, 2008, 31: 272–306
https://doi.org/10.2996/kmj/1214442799
|
| 7 |
Bejancu A, Farran F R. Foliations and Geometric Structures. Dordrecht: Springer, 2006
|
| 8 |
Bejancu A, Farran F R. Finsler geometry and natural foliations on the tangent bundle. Rep Math Phys, 2006, 58: 131–146
https://doi.org/10.1016/S0034-4877(06)80044-3
|
| 9 |
Hushmandi A B, Rezaii M M. On warped product Finsler spaces of Landsberg type. J Math Phys, 2011, 52(9): 093506
https://doi.org/10.1063/1.3638036
|
| 10 |
Hushmandi A B, Rezaii M M. On the curvature of warped product Finsler spaces and the Laplacian of the Sasaki-Finsler metrics. J Geom Phys, 2012, 62: 2077–2089
https://doi.org/10.1016/j.geomphys.2012.06.003
|
| 11 |
Ida C, Adelina M. A vertical Liouville subfoliation on the cotangent bundle of a Cartan space and some related structures. Int J Geom Methods Mod Phys, 2014, 11(6): 1450063
https://doi.org/10.1142/S0219887814500637
|
| 12 |
Matsumoto M. Foundations of Finsler Geometry and Special Finsler Spaces. Otsu: Kaiseisha, 1986
|
| 13 |
Miron R. Cartan spaces in a new point of view by considering them as duals of Finsler spaces. Tensor (NS), 1987, 46: 330–334
|
| 14 |
Miron R. The homogeneous lift to the tangent bundle of a Finsler metric. Publ Math Debrecen, 2000, 57: 445–453
|
| 15 |
Peyghan E, Far L N. Foliations and a class of metrics on the tangent bundle. Turkish J Math, 2013, 37: 348–359
|
| 16 |
Peyghan E, Taybei A, Zhong C P. Foliations on the tangent bundle of Finsler manifolds. Sci China Math, 2012, 55(3): 647–662
https://doi.org/10.1007/s11425-011-4288-4
|
| 17 |
Taybei A, Peyghan E. On a class of Riemannian metrics arising from Finsler structures. C R Acad Sci Paris Ser I, 2011, 349: 319–322
https://doi.org/10.1016/j.crma.2011.01.021
|
| 18 |
Vaisman I. Cohomology and Differential Forms. New York: Marcel Dekker Inc, 1973
|
| 19 |
Yano K, Kon M. Structures on Manifolds. Singapore: World Scientific, 1984
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|