Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2017, Vol. 12 Issue (2) : 417-439    https://doi.org/10.1007/s11464-016-0614-z
RESEARCH ARTICLE
A class of metrics and foliations on tangent bundle of Finsler manifolds
Hongchuan XIA1(),Chunping ZHONG2
1. College of Mathematics and Statistics, Xinyang Normal University, Xinyang 464000, China
2. School of Mathematical Sciences, Xiamen University, Xiamen 361005, China
 Download: PDF(235 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Let (M,F) be a Finsler manifold, and let TM0 be the slit tangent bundle of M with a generalized Riemannian metric G, which is induced by F. In this paper, we extract many natural foliations of (TM0,G) and study their geometric properties. Next, we use this approach to obtain new characterizations of Finsler manifolds with positive constant flag curvature. We also investigate the relations between Levi-Civita connection, Cartan connection, Vaisman connection, vertical foliation, and Reinhart spaces.

Keywords Finsler manifold      foliation      constant flag curvature      Vaisman connection     
Corresponding Author(s): Hongchuan XIA   
Issue Date: 27 December 2016
 Cite this article:   
Hongchuan XIA,Chunping ZHONG. A class of metrics and foliations on tangent bundle of Finsler manifolds[J]. Front. Math. China, 2017, 12(2): 417-439.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-016-0614-z
https://academic.hep.com.cn/fmc/EN/Y2017/V12/I2/417
1 Alipour-Fakhri Y, Rezaii M M. The warped Sasaki-Matsumoto metric and bundlelike condition. J Math Phys, 2010, 51(12): 122701
https://doi.org/10.1063/1.3520636
2 Anastasiei M, Shimada H. Deformation of Finsler metrics. In: Antonelli P L, ed. Finslerian Geometries—A meetings of Minds. Dordrecht-Boston-London: Kluwer Academic Publishers, 2000, 53–66
https://doi.org/10.1007/978-94-011-4235-9_6
3 Attarchi H, Rezaii M M. Cartan spaces and natural foliations on the cotangent bundle. Int J Geom Methods Mod Phys, 2013, 10(3): 1250089
https://doi.org/10.1142/S0219887812500892
4 Balan V, Manea A. Leafwise 2-jet cohomology on foliated Finsler manifolds. In: Balkan Society of Geometries Proceeding, Vol 16. Bucharest: Geometry Balkan Press, 2009, 28–41
5 Bao D, Chern S S, Shen Z M. An Introduction to Riemann-Finsler Geometry. Grad Texts in Math, Vol 200. New York: Springer-Verlag, 2000
https://doi.org/10.1007/978-1-4612-1268-3
6 Bejancu A. Tangent bundle and indicatrix bundle of a Finsler manifold. Kodai Math J, 2008, 31: 272–306
https://doi.org/10.2996/kmj/1214442799
7 Bejancu A, Farran F R. Foliations and Geometric Structures. Dordrecht: Springer, 2006
8 Bejancu A, Farran F R. Finsler geometry and natural foliations on the tangent bundle. Rep Math Phys, 2006, 58: 131–146
https://doi.org/10.1016/S0034-4877(06)80044-3
9 Hushmandi A B, Rezaii M M. On warped product Finsler spaces of Landsberg type. J Math Phys, 2011, 52(9): 093506
https://doi.org/10.1063/1.3638036
10 Hushmandi A B, Rezaii M M. On the curvature of warped product Finsler spaces and the Laplacian of the Sasaki-Finsler metrics. J Geom Phys, 2012, 62: 2077–2089
https://doi.org/10.1016/j.geomphys.2012.06.003
11 Ida C, Adelina M. A vertical Liouville subfoliation on the cotangent bundle of a Cartan space and some related structures. Int J Geom Methods Mod Phys, 2014, 11(6): 1450063
https://doi.org/10.1142/S0219887814500637
12 Matsumoto M. Foundations of Finsler Geometry and Special Finsler Spaces. Otsu: Kaiseisha, 1986
13 Miron R. Cartan spaces in a new point of view by considering them as duals of Finsler spaces. Tensor (NS), 1987, 46: 330–334
14 Miron R. The homogeneous lift to the tangent bundle of a Finsler metric. Publ Math Debrecen, 2000, 57: 445–453
15 Peyghan E, Far L N. Foliations and a class of metrics on the tangent bundle. Turkish J Math, 2013, 37: 348–359
16 Peyghan E, Taybei A, Zhong C P. Foliations on the tangent bundle of Finsler manifolds. Sci China Math, 2012, 55(3): 647–662
https://doi.org/10.1007/s11425-011-4288-4
17 Taybei A, Peyghan E. On a class of Riemannian metrics arising from Finsler structures. C R Acad Sci Paris Ser I, 2011, 349: 319–322
https://doi.org/10.1016/j.crma.2011.01.021
18 Vaisman I. Cohomology and Differential Forms. New York: Marcel Dekker Inc, 1973
19 Yano K, Kon M. Structures on Manifolds. Singapore: World Scientific, 1984
[1] Songting YIN. Comparison theorems on Finsler manifolds with weighted Ricci curvature bounded below[J]. Front. Math. China, 2018, 13(2): 435-448.
[2] Xiaohuan MO. A new characterization of Finsler metrics with constant flag curvature 1[J]. Front Math Chin, 2011, 6(2): 309-323.
[3] GUO Enli, MO Xiaohuan. Riemann-Finsler geometry[J]. Front. Math. China, 2006, 1(4): 485-498.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed