|
|
|
A class of simple Lie algebras attached to unit forms |
Jinjing CHEN1, Zhengxin CHEN2( ) |
1. School of Mathematical Sciences, Xiamen University, Xiamen 361000, China 2. School of Mathematics and Computer Science & FJKLMAA, Fujian Normal University, Fuzhou 350117, China |
|
|
|
|
Abstract Let n≥3.The complex Lie algebra, which is attached to a unit form and defined by generators and generalized Serre relations, is proved to be a finite-dimensional simple Lie algebra of type ,and realized by the Ringel-Hall Lie algebra of a Nakayama algebra of radical square zero. As its application of the realization, we give the roots and a Chevalley basis of the simple Lie algebra.
|
| Keywords
Nakayama algebras
finite-dimensional simple Lie algebras
Ringel-Hall Lie algebras
|
|
Corresponding Author(s):
Zhengxin CHEN
|
|
Issue Date: 06 July 2017
|
|
| 1 |
AsashibaH. Realization of simple Lie algebras via Hall algebras of tame hereditary algebras. J Math Soc Japan, 2004, 56: 889–905
https://doi.org/10.2969/jmsj/1191334090
|
| 2 |
AsashibaH. Domestic canonical and simple Lie algebras. Math Z, 2008, 259: 713–754
https://doi.org/10.1007/s00209-007-0246-9
|
| 3 |
BarotM, KussinD, LenzingH. The Lie algebra associated to a unit form. J Algebra, 2006, 296: 1–17
https://doi.org/10.1016/j.jalgebra.2005.11.017
|
| 4 |
ChenZ. Canonical algebras of type (n1, n2, n3) and Kac-Moody algebras. Comm Algebra, 2014, 42(8): 3297–3324
https://doi.org/10.1080/00927872.2013.781613
|
| 5 |
ChenZ, LinY. Tubular algebras and affine Kac-Moody algebras. Sci China Ser A, 2007, 50(4): 521–532
https://doi.org/10.1007/s11425-007-0020-9
|
| 6 |
DingM, XiaoJ, XuF. Realizing enveloping algebras via varieties of modules. Acta Math Sin (Engl Ser), 2010, 26: 29–48
https://doi.org/10.1007/s10114-010-9070-y
|
| 7 |
FrenkelI, MalkinA, VybornovM. Affine Lie algebras and tame quiver. Selecta Math, 2001, 7: 1–56
https://doi.org/10.1007/PL00001397
|
| 8 |
HappelD. Triangulated Categories in the Representation Theory of Finite Dimensional Algebras. London Math Soc Lecture Note Ser, Vol 119. Cambridge: Cambridge Univ Press, 1988
https://doi.org/10.1017/CBO9780511629228
|
| 9 |
HappelD, SeidelU. Piecewise hereditary Nakayama algebras. Algebr Represent Theory, 2010, 13: 693–704
https://doi.org/10.1007/s10468-009-9169-y
|
| 10 |
HappelD, ZachariaD. A homological characterization of piecewise hereditary algebras. Math Z, 2008, 260: 177–185
https://doi.org/10.1007/s00209-007-0268-3
|
| 11 |
LinY, PengL. Elliptic Lie algebras and tubular algebras. Adv Math, 2005, 196: 487–530
https://doi.org/10.1016/j.aim.2004.09.006
|
| 12 |
PengL. Intersection matrix Lie algebras and Ringel-Hall Lie algebras of tilted algebras. In: Proc 9th Inter Conf Representations of Algebra. Beijing: Beijing Normal Univ Press, 2002, 98–108
|
| 13 |
PengL, XiaoJ. Root categories and simple Lie algebras. J Algebra, 1997, 198: 19–56
https://doi.org/10.1006/jabr.1997.7152
|
| 14 |
PengL, XiaoJ. Triangulated categories and Kac-Moody algebras. Invent Math, 2000, 140: 563–603
https://doi.org/10.1007/s002220000062
|
| 15 |
PengL, XuM. Symmetrizable intersection matrices and their root systems. arXiv: 0912.1024v1
|
| 16 |
RiedtmannC. Lie algebras generated by indecomposables. J Algebra, 1997, 198: 19–56
|
| 17 |
RingelC M. Hall algebras. Topics in Algebra, Banach Center Publ, 1990, 26: 433–447
|
| 18 |
RingelC M. Hall polynominals for the representation-finite hereditary algebras. Adv Math, 1990, 84(2): 137–178
https://doi.org/10.1016/0001-8708(90)90043-M
|
| 19 |
RingelC M. Lie algebras arising in representation theory. In: Representations of Algebras and Related Topics (Kyoto, 1990). London Math Soc Lecture Note Ser, Vol 168. Cambridge: Cambridge Univ Press, 1992, 284–291
https://doi.org/10.1017/CBO9780511661853.010
|
| 20 |
SerreJ P. Complex Semisimple Lie Algebras. New York: Spinger-Verlag, 1987
https://doi.org/10.1007/978-1-4757-3910-7
|
| 21 |
SlodowyP. Beyond Kac-Moody algebras and inside. In: Britten D J, Lemire F W, Moody R V, eds. Lie Algebras and Related Topics. Canad Math Soc Conf Proc, Vol 5. Providence: Amer Math Soc, 1986, 361–371
|
| 22 |
XiaoJ, XuF, ZhangG. Derived categories and Lie algebras. arXiv: math/0604564v1
|
| 23 |
XuM, PengL. Symmetrizable intersection matrix Lie algebras. Algebra Colloq, 2011, 18(4): 639–646
https://doi.org/10.1142/S1005386711000484
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|