|
|
|
Valuation of correlation options under a stochastic interest rate model with regime switching |
Kun FAN, Rongming WANG( ) |
| School of Statistics, East China Normal University, Shanghai 200241, China |
|
|
|
|
Abstract We consider the valuation of a correlation option, a two-factor analog of a European call option, under a Hull-White interest rate model with regime switching. More specifically, the model parameters are modulated by an observable, continuous-time, finite-state Markov chain. We obtain an integral pricing formula for the correlation option by adopting the techniques of measure changes and inverse Fourier transform. Numerical analysis, via the fast Fourier transform, is provided to illustrate the practical implementation of our model.
|
| Keywords
Correlation option
stochastic interest rate
regime-switching
forward measure
fast Fourier transform (FFT)
|
|
Corresponding Author(s):
Rongming WANG
|
|
Issue Date: 30 September 2017
|
|
| 1 |
BakshiG, MadanD. Spanning and derivative-security valuation.J Financial Economics, 2000, 55: 205–238
https://doi.org/10.1016/S0304-405X(99)00050-1
|
| 2 |
CarrP, MadanD. Option valuation using the fast Fourier transform.J Comput Finance, 1999, 2: 61–73
https://doi.org/10.21314/JCF.1999.043
|
| 3 |
CoxJ, IngersollJ, RossS. A theory of the term structure of interest rates.Econometrica, 1985, 53: 385–407
https://doi.org/10.2307/1911242
|
| 4 |
DempsterM A H, HongS S G.Spread option valuation and the fast Fourier transform.In: Mathematical Finance-Bachelier Congress 2000. Berlin: Springer, 2002, 203–220
https://doi.org/10.1007/978-3-662-12429-1_10
|
| 5 |
ElliottR J, AggounL, MooreJ B. Hidden Markov Models: Estimation and Control.Berlin-Heidelberg-New York: Springer, 1994
|
| 6 |
ElliottR J, MamonR S. An interest rate model with a Markovian mean-reverting level.Quant Finance, 2002, 2(6): 454–458
https://doi.org/10.1080/14697688.2002.0000012
|
| 7 |
ElliottR J, SiuT K. On Markov-modulated exponential-affine bond price formulae.Appl Math Finance, 2009, 16(1): 1–15
https://doi.org/10.1080/13504860802015744
|
| 8 |
ElliottR J, SiuT K, BadescuA. Bond valuation under a discrete-time regime-switching term-structure model and its continuous-time extension.Managerial Finance, 2011, 37(11): 1025–1047
https://doi.org/10.1108/03074351111167929
|
| 9 |
ElliottR J, WilsonC A. The term structure of interest rates in a hidden Markov setting.In: Mamon R S, Elliott R J, eds. Hidden Markov Models in Finance. New York: Springer, 2007, 15–30
https://doi.org/10.1007/0-387-71163-5_2
|
| 10 |
FanK, ShenY, SiuT K, WangR. An FFT approach for option pricing under a regimeswitching stochastic interest rate model.Comm Statist Theory Methods, 2017, 46(11): 5292–5310
https://doi.org/10.1080/03610926.2015.1100740
|
| 11 |
HamiltonJ D. A new approach to the economic analysis of nonstationary time series and the business cycle.Econometrica, 1989, 57: 357–384
https://doi.org/10.2307/1912559
|
| 12 |
HullJ, WhiteA. Pricing interest-rate derivative securities.Rev Financial Studies, 1990, 3(4): 573–592
https://doi.org/10.1093/rfs/3.4.573
|
| 13 |
KwokY K, LeungK S, WongH Y. Efficient option pricing using the fast Fo urier transform.In: Duan J C, Härdle W K, Gentle J E, eds. Handbook of Computational Finance. Berlin: Springer-Verlag, 2012, 579–604
https://doi.org/10.1007/978-3-642-17254-0_21
|
| 14 |
LiuR H, ZhangQ, YinG. Option pricing in a regime-switching model using the fast Fourier transform.Int J Stoch Anal, 2006, Article ID: 18109
https://doi.org/10.1155/JAMSA/2006/18109
|
| 15 |
PalmowskiZ, RolskiT. A technique for exponential change of measure for Markov processes.Bernoulli, 2002, 8: 767–785
|
| 16 |
RolskiT, SchmidliH, SchmidliV, TeugelsJ L. Stochastic Processes for Insurance and Finance.New York: Wiley, 1999
https://doi.org/10.1002/9780470317044
|
| 17 |
ShenY, SiuT K. Pricing bond options under a Markovian regime-switching Hull-White model.Economic Modelling, 2013, 30: 933–940
https://doi.org/10.1016/j.econmod.2012.09.041
|
| 18 |
ShenY, SiuT K. Pricing variance swaps under a stochastic interest rate and volatility model with regime-switching.Oper Res Lett, 2013, 41: 180–187
https://doi.org/10.1016/j.orl.2012.12.008
|
| 19 |
SiuT K. Bond pricing under a Markovian regime-switching jump-augmented Vasicek model via stochastic flows.Appl Math Comput, 2010, 216: 3184–3190
https://doi.org/10.1016/j.amc.2010.04.037
|
| 20 |
VasicekO. An equilibrium characterization of the term structure.J Financial Economics, 1977, 5: 177–188
https://doi.org/10.1016/0304-405X(77)90016-2
|
| 21 |
ZhangS, WangL. A fast Fourier transform technique for pricing European options with stochastic volaility and jump risk.Math Probl Eng, 2012, Article ID: 761637
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|