Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2017, Vol. 12 Issue (5) : 1113-1130    https://doi.org/10.1007/s11464-017-0608-5
RESEARCH ARTICLE
Valuation of correlation options under a stochastic interest rate model with regime switching
Kun FAN, Rongming WANG()
School of Statistics, East China Normal University, Shanghai 200241, China
 Download: PDF(757 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We consider the valuation of a correlation option, a two-factor analog of a European call option, under a Hull-White interest rate model with regime switching. More specifically, the model parameters are modulated by an observable, continuous-time, finite-state Markov chain. We obtain an integral pricing formula for the correlation option by adopting the techniques of measure changes and inverse Fourier transform. Numerical analysis, via the fast Fourier transform, is provided to illustrate the practical implementation of our model.

Keywords Correlation option      stochastic interest rate      regime-switching      forward measure      fast Fourier transform (FFT)     
Corresponding Author(s): Rongming WANG   
Issue Date: 30 September 2017
 Cite this article:   
Kun FAN,Rongming WANG. Valuation of correlation options under a stochastic interest rate model with regime switching[J]. Front. Math. China, 2017, 12(5): 1113-1130.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-017-0608-5
https://academic.hep.com.cn/fmc/EN/Y2017/V12/I5/1113
1 BakshiG, MadanD. Spanning and derivative-security valuation.J Financial Economics, 2000, 55: 205–238
https://doi.org/10.1016/S0304-405X(99)00050-1
2 CarrP, MadanD. Option valuation using the fast Fourier transform.J Comput Finance, 1999, 2: 61–73
https://doi.org/10.21314/JCF.1999.043
3 CoxJ, IngersollJ, RossS. A theory of the term structure of interest rates.Econometrica, 1985, 53: 385–407
https://doi.org/10.2307/1911242
4 DempsterM A H, HongS S G.Spread option valuation and the fast Fourier transform.In: Mathematical Finance-Bachelier Congress 2000. Berlin: Springer, 2002, 203–220
https://doi.org/10.1007/978-3-662-12429-1_10
5 ElliottR J, AggounL, MooreJ B. Hidden Markov Models: Estimation and Control.Berlin-Heidelberg-New York: Springer, 1994
6 ElliottR J, MamonR S. An interest rate model with a Markovian mean-reverting level.Quant Finance, 2002, 2(6): 454–458
https://doi.org/10.1080/14697688.2002.0000012
7 ElliottR J, SiuT K. On Markov-modulated exponential-affine bond price formulae.Appl Math Finance, 2009, 16(1): 1–15
https://doi.org/10.1080/13504860802015744
8 ElliottR J, SiuT K, BadescuA. Bond valuation under a discrete-time regime-switching term-structure model and its continuous-time extension.Managerial Finance, 2011, 37(11): 1025–1047
https://doi.org/10.1108/03074351111167929
9 ElliottR J, WilsonC A. The term structure of interest rates in a hidden Markov setting.In: Mamon R S, Elliott R J, eds. Hidden Markov Models in Finance. New York: Springer, 2007, 15–30
https://doi.org/10.1007/0-387-71163-5_2
10 FanK, ShenY, SiuT K, WangR. An FFT approach for option pricing under a regimeswitching stochastic interest rate model.Comm Statist Theory Methods, 2017, 46(11): 5292–5310
https://doi.org/10.1080/03610926.2015.1100740
11 HamiltonJ D. A new approach to the economic analysis of nonstationary time series and the business cycle.Econometrica, 1989, 57: 357–384
https://doi.org/10.2307/1912559
12 HullJ, WhiteA. Pricing interest-rate derivative securities.Rev Financial Studies, 1990, 3(4): 573–592
https://doi.org/10.1093/rfs/3.4.573
13 KwokY K, LeungK S, WongH Y. Efficient option pricing using the fast Fo urier transform.In: Duan J C, Härdle W K, Gentle J E, eds. Handbook of Computational Finance. Berlin: Springer-Verlag, 2012, 579–604
https://doi.org/10.1007/978-3-642-17254-0_21
14 LiuR H, ZhangQ, YinG. Option pricing in a regime-switching model using the fast Fourier transform.Int J Stoch Anal, 2006, Article ID: 18109
https://doi.org/10.1155/JAMSA/2006/18109
15 PalmowskiZ, RolskiT. A technique for exponential change of measure for Markov processes.Bernoulli, 2002, 8: 767–785
16 RolskiT, SchmidliH, SchmidliV, TeugelsJ L. Stochastic Processes for Insurance and Finance.New York: Wiley, 1999
https://doi.org/10.1002/9780470317044
17 ShenY, SiuT K. Pricing bond options under a Markovian regime-switching Hull-White model.Economic Modelling, 2013, 30: 933–940
https://doi.org/10.1016/j.econmod.2012.09.041
18 ShenY, SiuT K. Pricing variance swaps under a stochastic interest rate and volatility model with regime-switching.Oper Res Lett, 2013, 41: 180–187
https://doi.org/10.1016/j.orl.2012.12.008
19 SiuT K. Bond pricing under a Markovian regime-switching jump-augmented Vasicek model via stochastic flows.Appl Math Comput, 2010, 216: 3184–3190
https://doi.org/10.1016/j.amc.2010.04.037
20 VasicekO. An equilibrium characterization of the term structure.J Financial Economics, 1977, 5: 177–188
https://doi.org/10.1016/0304-405X(77)90016-2
21 ZhangS, WangL. A fast Fourier transform technique for pricing European options with stochastic volaility and jump risk.Math Probl Eng, 2012, Article ID: 761637
[1] Jie GUO, Guojing WANG. A reduced-form model with default intensities containing contagion and regime-switching Vasicek processes[J]. Front. Math. China, 2018, 13(3): 535-554.
[2] Yinghui DONG, Kam Chuen YUEN, Guojing WANG. Valuation of CDS counterparty risk under a reduced-form model with regime-switching shot noise default intensities[J]. Front. Math. China, 2017, 12(5): 1085-1112.
[3] Yinghui DONG, Guojing WANG. A contagion model with Markov regime-switching intensities[J]. Front Math Chin, 2014, 9(1): 45-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed