|
|
|
Vanishing of stable homology with respect to a semidualizing module |
Li LIANG( ) |
| School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China |
|
|
|
|
Abstract We investigate stable homology of modules over a commutative noetherian ring R with respect to a semidualzing module C, and give some vanishing results that improve/extend the known results. As a consequence, we show that the balance of the theory forces C to be trivial and R to be Gorenstein.
|
| Keywords
Stable homology
semidualizing module
proper resolution
|
|
Corresponding Author(s):
Li LIANG
|
|
Issue Date: 12 January 2018
|
|
| 1 |
Avramov L L, Veliche O. Stable cohomology over local rings. Adv Math, 2007, 213: 93–139
https://doi.org/10.1016/j.aim.2006.11.012
|
| 2 |
Celikbas O, Christensen L W, Liang L, Piepmeyer G. Stable homology over associate rings. Trans Amer Math Soc, 2017, 369: 8061–8086
https://doi.org/10.1090/tran/6897
|
| 3 |
Celikbas O, Christensen L W, Liang L, Piepmeyer G. Complete homology over associate rings. Israel J Math (to appear)
|
| 4 |
Christensen L W, Frankild A, Holm H. On Gorenstein projective, injective and flat dimensions—A functorial description with applications. J Algebra, 2006, 302: 231–279
https://doi.org/10.1016/j.jalgebra.2005.12.007
|
| 5 |
Emmanouil I. Mittag-Leffler condition and the vanishing of lim1←. Topology, 1996, 35: 267–271
https://doi.org/10.1016/0040-9383(94)00056-5
|
| 6 |
Emmanouil I, Manousaki P. On the stable homology of modules. J Pure Appl Algebra, 2017, 221: 2198–2219
https://doi.org/10.1016/j.jpaa.2016.12.003
|
| 7 |
Enochs E E, Jenda O M G. Relative Homological Algebra. de Gruyter Exp Math, Vol 30. Berlin: Walter de Gruyter, 2000
https://doi.org/10.1515/9783110803662
|
| 8 |
Foxby H B. Gorenstein modules and related modules. Math Scand, 1972, 31: 267–284
https://doi.org/10.7146/math.scand.a-11434
|
| 9 |
Goichot F. Homologie de Tate-Vogel équivariante. J Pure Appl Algebra, 1992, 82: 39–64
https://doi.org/10.1016/0022-4049(92)90009-5
|
| 10 |
Golod E S. G-dimension and generalized perfect ideals. Trudy Matematicheskogo Instituta Imeni VA Steklova, 1984, 165: 62–66
|
| 11 |
Grothendieck A, Dieudonné J. Éléments de Géométrie Algébrique, III. Publ Math IHES, No 11. Paris: IHES, 1961
|
| 12 |
Holm H, White D. Foxby equivalence over associative rings. J Math Kyoto Univ, 2007, 47: 781–808
https://doi.org/10.1215/kjm/1250692289
|
| 13 |
Nucinkis B E A. Complete cohomology for arbitrary rings using injectives. J Pure Appl Algebra, 1998, 131: 297–318
https://doi.org/10.1016/S0022-4049(97)00082-0
|
| 14 |
Roos J E. Sur les foncteurs dérivés de lim←. Applications, C R Acad Sci Paris, 1961, 252: 3702–3704
|
| 15 |
Salimi M, Sather-Wagstaff S, Tavasoli E, Yassemi S. Relative Tor functors with respect to a semidualizing module. Algebr Represent Theory, 2014, 17: 103–120
https://doi.org/10.1007/s10468-012-9389-4
|
| 16 |
Sather-Wagstaff S, Sharif T, White D. AB-contexts and stability for Gorenstein flat modules with respect to semidualizing modules. Algebr Represent Theory, 2011, 14: 403–428
https://doi.org/10.1007/s10468-009-9195-9
|
| 17 |
Sather-Wagstaff S, Yassemi S. Modules of finite homological dimension with respect to a semidualizing module. Arch Math, 2009, 93: 111–121
https://doi.org/10.1007/s00013-009-0020-9
|
| 18 |
Takahashi R, White D. Homological aspects of semidualizing modules. Math Scand, 2010, 106: 5–22
https://doi.org/10.7146/math.scand.a-15121
|
| 19 |
Vasconcelos W V. Divisor Theory in Module Categories. North-Holland Math Stud, Vol 14. Amsterdam: North-Holland Publishing Co, 1974
|
| 20 |
Yeh Z Z. Higher Inverse Limits and Homology Theories. Thesis, Princeton Univ, 1959
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|