Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2018, Vol. 13 Issue (1) : 107-127    https://doi.org/10.1007/s11464-017-0661-0
RESEARCH ARTICLE
Vanishing of stable homology with respect to a semidualizing module
Li LIANG()
School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China
 Download: PDF(213 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We investigate stable homology of modules over a commutative noetherian ring R with respect to a semidualzing module C, and give some vanishing results that improve/extend the known results. As a consequence, we show that the balance of the theory forces C to be trivial and R to be Gorenstein.

Keywords Stable homology      semidualizing module      proper resolution     
Corresponding Author(s): Li LIANG   
Issue Date: 12 January 2018
 Cite this article:   
Li LIANG. Vanishing of stable homology with respect to a semidualizing module[J]. Front. Math. China, 2018, 13(1): 107-127.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-017-0661-0
https://academic.hep.com.cn/fmc/EN/Y2018/V13/I1/107
1 Avramov L L, Veliche O. Stable cohomology over local rings. Adv Math, 2007, 213: 93–139
https://doi.org/10.1016/j.aim.2006.11.012
2 Celikbas O, Christensen L W, Liang L, Piepmeyer G. Stable homology over associate rings. Trans Amer Math Soc, 2017, 369: 8061–8086
https://doi.org/10.1090/tran/6897
3 Celikbas O, Christensen L W, Liang L, Piepmeyer G. Complete homology over associate rings. Israel J Math (to appear)
4 Christensen L W, Frankild A, Holm H. On Gorenstein projective, injective and flat dimensions—A functorial description with applications. J Algebra, 2006, 302: 231–279
https://doi.org/10.1016/j.jalgebra.2005.12.007
5 Emmanouil I. Mittag-Leffler condition and the vanishing of lim⁡1←. Topology, 1996, 35: 267–271
https://doi.org/10.1016/0040-9383(94)00056-5
6 Emmanouil I, Manousaki P. On the stable homology of modules. J Pure Appl Algebra, 2017, 221: 2198–2219
https://doi.org/10.1016/j.jpaa.2016.12.003
7 Enochs E E, Jenda O M G. Relative Homological Algebra. de Gruyter Exp Math, Vol 30. Berlin: Walter de Gruyter, 2000
https://doi.org/10.1515/9783110803662
8 Foxby H B. Gorenstein modules and related modules. Math Scand, 1972, 31: 267–284
https://doi.org/10.7146/math.scand.a-11434
9 Goichot F. Homologie de Tate-Vogel équivariante. J Pure Appl Algebra, 1992, 82: 39–64
https://doi.org/10.1016/0022-4049(92)90009-5
10 Golod E S. G-dimension and generalized perfect ideals. Trudy Matematicheskogo Instituta Imeni VA Steklova, 1984, 165: 62–66
11 Grothendieck A, Dieudonné J. Éléments de Géométrie Algébrique, III. Publ Math IHES, No 11. Paris: IHES, 1961
12 Holm H, White D. Foxby equivalence over associative rings. J Math Kyoto Univ, 2007, 47: 781–808
https://doi.org/10.1215/kjm/1250692289
13 Nucinkis B E A. Complete cohomology for arbitrary rings using injectives. J Pure Appl Algebra, 1998, 131: 297–318
https://doi.org/10.1016/S0022-4049(97)00082-0
14 Roos J E. Sur les foncteurs dérivés de lim⁡←. Applications, C R Acad Sci Paris, 1961, 252: 3702–3704
15 Salimi M, Sather-Wagstaff S, Tavasoli E, Yassemi S. Relative Tor functors with respect to a semidualizing module. Algebr Represent Theory, 2014, 17: 103–120
https://doi.org/10.1007/s10468-012-9389-4
16 Sather-Wagstaff S, Sharif T, White D. AB-contexts and stability for Gorenstein flat modules with respect to semidualizing modules. Algebr Represent Theory, 2011, 14: 403–428
https://doi.org/10.1007/s10468-009-9195-9
17 Sather-Wagstaff S, Yassemi S. Modules of finite homological dimension with respect to a semidualizing module. Arch Math, 2009, 93: 111–121
https://doi.org/10.1007/s00013-009-0020-9
18 Takahashi R, White D. Homological aspects of semidualizing modules. Math Scand, 2010, 106: 5–22
https://doi.org/10.7146/math.scand.a-15121
19 Vasconcelos W V. Divisor Theory in Module Categories. North-Holland Math Stud, Vol 14. Amsterdam: North-Holland Publishing Co, 1974
20 Yeh Z Z. Higher Inverse Limits and Homology Theories. Thesis, Princeton Univ, 1959
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed