Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2018, Vol. 13 Issue (1) : 87-105    https://doi.org/10.1007/s11464-017-0672-x
RESEARCH ARTICLE
Global attracting sets and stability of neutral stochastic functional differential equations driven by Rosenblatt process
Zhi LI1,2, Litan YAN1(), Xianghui ZHOU2
1. College of Information Science and Technology, Donghua University, Shanghai 201620, China
2. School of Information and Mathematics, Yangtze University, Jingzhou 434023, China
 Download: PDF(206 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We are concerned with a class of neutral stochastic partial differential equations driven by Rosenblatt process in a Hilbert space. By combining some stochastic analysis techniques, tools from semigroup theory, and stochastic integral inequalities, we identify the global attracting sets of this kind of equations. Especially, some sufficient conditions ensuring the exponent p-stability of mild solutions to the stochastic systems under investigation are obtained. Last, an example is given to illustrate the theory in the work.

Keywords Global attracting sets      exponential p-th moment stability      Rosenblatt process     
Corresponding Author(s): Litan YAN   
Issue Date: 12 January 2018
 Cite this article:   
Zhi LI,Litan YAN,Xianghui ZHOU. Global attracting sets and stability of neutral stochastic functional differential equations driven by Rosenblatt process[J]. Front. Math. China, 2018, 13(1): 87-105.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-017-0672-x
https://academic.hep.com.cn/fmc/EN/Y2018/V13/I1/87
1 Albin J M P. A note on Rosenblatt distributions. Statist. Probab. Lett, 1998, 40(1): 83–91
https://doi.org/10.1016/S0167-7152(98)00109-6
2 Bardet J M, Tudor C A. A wavelet analysis of the Rosenblatt process: chaos expansion and estimation of the self-similarity parameter. Stochastic Process Appl, 2010, 120(12): 2331–2362
https://doi.org/10.1016/j.spa.2010.08.003
3 Boudrahem S, Rougier P R. Relation between postural control assessment with eyes open and centre of pressure visual feed back effects in healthy individuals. Exp Brain Res, 2009, 195: 145–152
https://doi.org/10.1007/s00221-009-1761-1
4 Comte F, Renault E. Long memory continuous time models. J Econometrics, 1996, 73: 101–149
https://doi.org/10.1016/0304-4076(95)01735-6
5 de la Fuente I M, Perez-Samartin A L, Matnez L, Garcia M A, Vera-Lopez A. Long-range correlations in rabbit brain neural activity. Ann Biomed Eng, 2006, 34(2): 295–299
https://doi.org/10.1007/s10439-005-9026-z
6 Li D S, Xu D Y. Attracting and quasi-invariant sets of stochastic neutral partial functional differential equations. Acta Math Sci Ser B Engl Ed, 2013, 33: 578–588
https://doi.org/10.1016/S0252-9602(13)60021-1
7 Long S, Teng L, Xu D Y. Global attracting set and stability of stochastic neutral partial functional differential equations with impulses. Statist Probab Lett, 2012, 82: 1699–1709
https://doi.org/10.1016/j.spl.2012.05.018
8 Maejima M, Tudor C A. Wiener integrals with respect to the Hermite process and a non central limit theorem. Stochastic Anal Appl, 2007, 25: 1043–1056
https://doi.org/10.1080/07362990701540519
9 Maejima M, Tudor C A. On the distribution of the Rosenblatt process. Statist Probab Lett, 2013, 83(6): 1490–1495
https://doi.org/10.1016/j.spl.2013.02.019
10 Pazy A. Semigroup of Linear Operators and Applications to Partial Differential Equations. New York: Spring-Verlag, 1992
11 Rypdal M, Rypdal K. Testing hypotheses about sun-climate complexity linking. Phys Rev Lett, 2010, 104: 128–151
https://doi.org/10.1103/PhysRevLett.104.128501
12 Shen G J, Ren Y. Neutral stochastic partial differential equations with delay driven by Rosenblatt process in a Hilbert space. J Korean Statist Soc, 2015, 44: 123–133
https://doi.org/10.1016/j.jkss.2014.06.002
13 Shen G J, Yin X, Yan L T. Approximation of the Rosenblatt sheet. Mediterr J Math, 2016, 13: 2215–2227
https://doi.org/10.1007/s00009-015-0576-5
14 Shen G J, Yin X, Zhu D J. Weak convergence to Rosenblatt sheet. Front Math China, 2015, 10: 985–1004
https://doi.org/10.1007/s11464-015-0458-y
15 Shieh N R, Xiao Y M. Hausdorff and packing dimensions of the images of random fields. Bernoulli, 2010, 16(4): 926–952
https://doi.org/10.3150/09-BEJ244
16 Simonsen I. Measuring anti-correlations in the nordic electricity spot market by wavelets. Phys A, 2003, 322: 597–606
https://doi.org/10.1016/S0378-4371(02)01938-6
17 Taqqu M S. Weak convergence to fractional Brownian motion and to the Rosenblatt process. Probab Theory Related Fields, 1975, 31(4): 287–302
18 Tudor C A. Analysis of the Rosenblatt process. ESAIM Probab Stat, 2008, 12: 230–257
https://doi.org/10.1051/ps:2007037
19 Tudor C A, Viens F G. Variations and estimators for self-similarity parameters via Malliavin calculus. Ann Probab, 2009, 37(6): 2093–2134
https://doi.org/10.1214/09-AOP459
20 Veillette M, Taqqu M S. Properties and numerical evaluation of the Rosenblatt distribution. Bernoulli, 2013, 19: 982–1005
https://doi.org/10.3150/12-BEJ421
21 Willinger W, Leland W, Taqqu M, Wilson D. On self-similar nature of ethernet traffic. IEEE/ACM Trans Networking, 1994, 2: 1–15
https://doi.org/10.1109/90.282603
22 Xu D Y, Long S J. Attracting and quasi-invariant sets of no-autonomous neutral networks with delays. Neurocomputing, 2012, 77: 222–228
https://doi.org/10.1016/j.neucom.2011.09.004
23 Zhao Z H, Jian J G. Attracting and quasi-invariant sets for BAM neural networks of neutral-type with time-varying and infinite distributed delays. Neurocomputing, 2014, 140: 265–272
https://doi.org/10.1016/j.neucom.2014.03.015
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed