Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2018, Vol. 13 Issue (2) : 459-481    https://doi.org/10.1007/s11464-018-0687-y
RESEARCH ARTICLE
Error bounds of Lanczos approach for trust-region subproblem
Leihong ZHANG1,2(), Weihong YANG3, Chungen SHEN4, Jiang FENG1
1. School of Mathematics, Shanghai University of Finance and Economics, Shanghai 200433, China
2. Shanghai Key Laboratory of Financial Information Technology, Shanghai University of Finance and Economics, Shanghai 200433, China
3. School of Mathematical Sciences, Fudan University, Shanghai 200433, China
4. College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
 Download: PDF(250 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Because of its vital role of the trust-region subproblem (TRS) in various applications, for example, in optimization and in ill-posed problems, there are several factorization-free algorithms for solving the large-scale sparse TRS. The truncated Lanczos approach proposed by N. I. M. Gould, S. Lucidi, M. Roma, and P. L. Toint [SIAM J. Optim., 1999, 9: 504–525] is a natural extension of the classical Lanczos method for the symmetric linear system and eigenvalue problem and, indeed follows the classical Rayleigh-Ritz procedure for eigenvalue computations. It consists of 1) projecting the original TRS to the Krylov subspaces to yield smaller size TRS’s and then 2) solving the resulted TRS’s to get the approximates of the original TRS. This paper presents a posterior error bounds for both the global optimal value and the optimal solution between the original TRS and their projected counterparts. Our error bounds mainly rely on the factors from the Lanczos process as well as the data of the original TRS and, could be helpful in designing certain stopping criteria for the truncated Lanczos approach.

Keywords Trust-region method      trust-region subproblem (TRS)      Lanczos method      Steihaug–Toint conjugate-gradient iteration      error bound     
Corresponding Author(s): Leihong ZHANG   
Issue Date: 28 March 2018
 Cite this article:   
Leihong ZHANG,Weihong YANG,Chungen SHEN, et al. Error bounds of Lanczos approach for trust-region subproblem[J]. Front. Math. China, 2018, 13(2): 459-481.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-018-0687-y
https://academic.hep.com.cn/fmc/EN/Y2018/V13/I2/459
1 Conn A R, Gould N I M, Toint P L. Trust-Region Methods. Philadelphia: SIAM, 2000
https://doi.org/10.1137/1.9780898719857
2 Demmel J. Applied Numerical Linear Algebra. Philadelphia: SIAM, 1997
https://doi.org/10.1137/1.9781611971446
3 Gay D M. Computing optimal locally constrained steps. SIAM J Sci Statist Comput, 1981, 2: 186–197
https://doi.org/10.1137/0902016
4 Golub G H, Van Loan C F. Matrix Computations. 3rd ed. Baltimore: Johns Hopkins University Press, 1996
5 Golub G H, von Matt U. Quadratically constrained least squares and quadratic problems. Numer Math, 1991, 59: 561–580
https://doi.org/10.1007/BF01385796
6 Gould N I M, Lucidi S, Roma M, Toint P L. Solving the trust-region subproblem using the Lanczos method. SIAM J Optim, 1999, 9: 504–525
https://doi.org/10.1137/S1052623497322735
7 Hager W W. Minimizing a quadratic over a sphere. SIAM J Optim, 2001, 12: 188–208
https://doi.org/10.1137/S1052623499356071
8 Hager W W, Krylyuk Y. Graph partitioning and continuous quadratic programming. SIAM J Discrete Math, 1999, 12(4): 500–523
https://doi.org/10.1137/S0895480199335829
9 Li C K, Li R C. A note on eigenvalues of perturbed Hermitian matrices. Linear Algebra Appl, 2005, 395: 183–190
https://doi.org/10.1016/j.laa.2004.08.026
10 Li R C. On Meinardus’ examples for the conjugate gradient method. Math Comp, 2008, 77(261): 335–352
https://doi.org/10.1090/S0025-5718-07-01922-9
11 Li R C. Sharpness in rates of convergence for symmetric Lanczos method. Math Comp, 2010, 79(269): 419–435
https://doi.org/10.1090/S0025-5718-09-02258-3
12 Li R C, Zhang L H. Convergence of block Lanczos method for eigenvalue clusters. Numer Math, 2015, 131: 83–113
https://doi.org/10.1007/s00211-014-0681-6
13 Luk˘san L, Matonoha C, Vl˘cek J. On Lagrange multipliers of trust-region subproblems. BIT, 2008, 48: 763–768
https://doi.org/10.1007/s10543-008-0197-5
14 Moŕe J, Sorensen D C. Computing a trust region step. SIAM J Sci Statist Comput, 1983, 4(3): 553–572
https://doi.org/10.1137/0904038
15 Nocedal J, Wright S. Numerical Optimization. 2nd ed. Berlin: Springer, 2006
16 Parlett B N. The Symmetric Eigenvalue Problem. Philadelphia: SIAM, 1998
https://doi.org/10.1137/1.9781611971163
17 Rendl R, Wolkowicz H. A semidefinite framework for trust region subproblems with applications to large scale minimization. Math Program, 1997, 77(2): 273–299
https://doi.org/10.1007/BF02614438
18 Rojas M, Santos S A, Sorensen D C. Algorithm 873: LSTRS: MATLAB software for large-scale trust-region subproblems and regularization. ACM Trans Math Software, 2008, 34(2): 1–28
https://doi.org/10.1145/1326548.1326553
19 Rojas M, Santos S A, Sorensen D C. A new matrix-free algorithm for the large-scale trust-region subproblem. SIAM J Optim, 2000, 11: 611–646
https://doi.org/10.1137/S105262349928887X
20 Rojas M, Sorensen D C. A trust-region approach to the regularization of large-scale discrete forms of ill-posed problems. SIAM J Sci Comput, 2002, 23: 1843–1861
https://doi.org/10.1137/S1064827500378167
21 Saad Y. Iterative Methods for Sparse Linear Systems. 2nd ed. Philadelphia: SIAM, 2003
https://doi.org/10.1137/1.9780898718003
22 Sorensen D C. Minimization of a large-scale quadratic function subject to a spherical constraint. SIAM J Optim, 1997, 7: 141–161
https://doi.org/10.1137/S1052623494274374
23 Steihaug T. The conjugate gradient method and trust regions in large scale optimization. SIAM J Numer Anal, 1983, 20: 626–637
https://doi.org/10.1137/0720042
24 Tarantola A. Inverse Problem Theory. Amsterdam: Elsevier, 1987
25 Tikhonov A N. Regularization of incorrectly posed problems. Soviet Math, 1963, 4: 1624–1627
26 Toint P L. Towards an efficient sparsity exploiting Newton method for minimization. In: Duff I, ed. Sparse Matrices and Their Uses. London: Academic Press, 1981, 57–88
27 Zhang L H, Shen C G, Li R C. On the generalized Lanczos trust-region method. SIAM J Optim, 2017, 27(3): 2110–2142
https://doi.org/10.1137/16M1095056
[1] Changli LIU, Ren-Cang LI. Structured backward error for palindromic polynomial eigenvalue problems, II: Approximate eigentriplets[J]. Front. Math. China, 2018, 13(6): 1397-1426.
[2] ZHU Detong. Projected Hessian algorithm with backtracking interior point technique for linear constrained optimization[J]. Front. Math. China, 2006, 1(4): 620-628.
[3] YAN Qingyou, WEI Xiaopeng. Error analysis of symplectic Lanczos method for Hamiltonian eigenvalue problem[J]. Front. Math. China, 2006, 1(3): 430-451.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed