Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2019, Vol. 14 Issue (2) : 475-491    https://doi.org/10.1007/s11464-019-0755-y
RESEARCH ARTICLE
Derivative estimates of averaging operators and extension
Junyan ZHAO1(), Dashan FAN2
1. Department of Mathematics, Zhejiang University, Hangzhou 310027, China
2. Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
 Download: PDF(312 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We study the derivative operator of the generalized spherical mean Stγ. By considering a more general multiplier mγ,bΩ=Vn22+γ(|ξ|)|ξ|bΩ(ξ') and finding the smallest γ such that mγ,bΩ is an Hp multiplier, we obtain the optimal range of exponents (γ,β,p) to ensure the Hp(n) boundedness of βS1γf(x). As an application, we obtain the derivative estimates for the solution for the Cauchy problem of the wave equation on Hp(n) spaces.

Keywords Generalized spherical mean      Bessel function      Hp multiplier      wave equation      oscillatory integrals     
Corresponding Author(s): Junyan ZHAO   
Issue Date: 14 May 2019
 Cite this article:   
Junyan ZHAO,Dashan FAN. Derivative estimates of averaging operators and extension[J]. Front. Math. China, 2019, 14(2): 475-491.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-019-0755-y
https://academic.hep.com.cn/fmc/EN/Y2019/V14/I2/475
1 CBennett, RSharpley. Interpolation of Operators. Pure Appl Math, Vol 129. Boston: Academic Press, 1988
2 JBourgain. Averages in the plane over convex curves and maximal operators. J Anal Math, 1986, 47: 69–85
https://doi.org/10.1007/BF02792533
3 ACarbery, J LRubio de Francia, LVega. Almost everywhere summability of Fourier integrals. J Lond Math Soc (2), 1988, 38(3): 513–524
https://doi.org/10.1112/jlms/s2-38.3.513
4 J CChen, D SFan, L JSun. Hardy space estimates for the wave equation on compact Lie groups. J Funct Anal, 2010, 259(12): 3230–3264
https://doi.org/10.1016/j.jfa.2010.08.020
5 D SFan, F YZhao. Approximation properties of combination of multivariate averages on Hardy spaces. J Approx Theory, 2017, 223: 77–95
https://doi.org/10.1016/j.jat.2017.07.008
6 I MGelfand, G EShilov. Generalized Functions. Vol I: Properties and Operations. New York-London: Academic Press, 1964
7 LGrafakos. Classical Fourier Analysis. 3rd ed. Grad Texts in Math, Vol 249. New York: Springer, 2014
https://doi.org/10.1007/978-1-4939-1194-3
8 S ZLu. Four Lectures on Real Hp Spaces. River Edge: World Scientific Publishing Co, Inc, 1995
https://doi.org/10.1142/9789812831194
9 AMiyachi. On some singular Fourier multipliers. J Fac Sci Univ Tokyo Sect IA Math, 1981, 28(2): 267–315
10 J CPeral. Lpestimates for the wave equation. J Funct Anal, 1980, 36(1): 114–145
https://doi.org/10.1016/0022-1236(80)90110-X
11 E MStein. Maximal functions I: Spherical means. Proc Natl Acad Sci USA, 1976, 73(7): 2174–2175
https://doi.org/10.1073/pnas.73.7.2174
12 E MStein. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Math Ser, Vol 43. Princeton: Princeton Univ Press, 1993
https://doi.org/10.1515/9781400883929
13 E MStein, GWeiss. Introduction to Fourier Analysis on Euclidean Spaces. Princeton: Princeton Univ Press, 1971
https://doi.org/10.1515/9781400883899
14 J YZhao, D SFan. Certain averaging operators on Lebesgue spaces. Banach J Math Anal (to appear)
[1] Chenmu WANG, Yanyan WANG. Partial approximate boundary synchronization for a coupled system of wave equations with Dirichlet boundary controls[J]. Front. Math. China, 2020, 15(4): 727-748.
[2] Yanyan WANG. Determination of generalized exact boundary synchronization matrix for a coupled system of wave equations[J]. Front. Math. China, 2019, 14(6): 1339-1352.
[3] Hui WANG, Shoufu TIAN, Tiantian ZHANG, Yi CHEN. Lump wave and hybrid solutions of a generalized (3+ 1)-dimensional nonlinear wave equation in liquid with gas bubbles[J]. Front. Math. China, 2019, 14(3): 631-643.
[4] Yang LIU, Hong LI, Wei GAO, Siriguleng HE, Jinfeng WANG. Splitting positive definite mixed element method for viscoelasticity wave equation[J]. Front Math Chin, 2012, 7(4): 725-742.
[5] Ke WANG. Exact boundary controllability of nodal profile for 1-D quasilinear wave equations[J]. Front Math Chin, 2011, 6(3): 545-555.
[6] BERTI Massimiliano, BOLLE Philippe. Cantor families of periodic solutions for completely resonant wave equations[J]. Front. Math. China, 2008, 3(2): 151-165.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed