Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2020, Vol. 15 Issue (1) : 205-213    https://doi.org/10.1007/s11464-020-0817-1
RESEARCH ARTICLE
Mean-square estimate of automorphic L-functions
Weili YAO()
Department of Mathematics, Shanghai University, Shanghai 200444, China
 Download: PDF(248 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Let f be a holomorphic Hecke cusp form with even integral weight k2 for the full modular group, and let χ be a primitive Dirichlet character modulo q. Let Lf(s,χ) be the automorphic L-function attached to f and χ. We study the mean-square estimate of Lf(s,χ) and establish an asymptotic formula.

Keywords Automorphic L-function      cusp form      Fourier coe_cient     
Corresponding Author(s): Weili YAO   
Issue Date: 09 March 2020
 Cite this article:   
Weili YAO. Mean-square estimate of automorphic L-functions[J]. Front. Math. China, 2020, 15(1): 205-213.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-020-0817-1
https://academic.hep.com.cn/fmc/EN/Y2020/V15/I1/205
1 V Blomer. Shifted convolution sums and subconvexity bounds for automorphic L-functions. Int Math Res Not IMRN, 2004, 73: 3905–3926
https://doi.org/10.1155/S1073792804142505
2 V Blomer, G Harcos. Hybrid bounds for twisted L-functions. J Reine Angew Math, 2008, 621: 53–79
https://doi.org/10.1515/CRELLE.2008.058
3 P Deligne. Formes modulaires et représentations l-adiques. In: Séminaire Bourbaki, Vol. 1968/69, Exposés 347–363. Lecture Notes in Math, Vol 179. Berlin: Springer, 1971, 139–172
https://doi.org/10.1007/BFb0058810
4 P Deligne. La conjecture de Weil I. Publ Math Inst Hautes Études Sci, 1974, 43: 273–307
https://doi.org/10.1007/BF02684373
5 W Duke, J B Friedlander, H Iwaniec. Bounds for automorphic L-functions. Invent Math, 1993, 112: 1–8
https://doi.org/10.1007/BF01232422
6 J L Hafner, A Ivić. On sums of Fourier coefficients of cusp forms. Enseign Math, 1989, 35: 375–382
7 G Harcos. An additive problem in the Fourier coefficients of cusp forms. Math Ann, 2003, 326: 347–365
https://doi.org/10.1007/s00208-003-0421-1
8 H Iwaniec. Topics in Classical Automorphic Forms. Grad Stud Math, Vol 17. Providence: Amer Math Soc, 1997
https://doi.org/10.1090/gsm/017
9 Y-K Lau, G S Lü. Sums of Fourier coefficients of cusp forms. Quart J Math, 2011, 62: 687–716
https://doi.org/10.1093/qmath/haq012
10 R A Rankin. Contributions to the theory of Ramanujan's function τ(n) and similar arithmetical functions II. The order of the Fourier coefficients of the integral modular forms. Proc Cambridge Philos Soc, 1939, 35: 351–372
https://doi.org/10.1017/S0305004100021101
11 P Sarnak. Estimates for Rankin-Selberg L-functions and quantum unique ergodicity. J Funct Anal, 2001, 184: 419–453
https://doi.org/10.1006/jfan.2001.3783
12 A Selberg. Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist. Arch Math Naturvid, 1940, 43: 47–50
13 G Shimura. Introduction to the Arithmetic Theory of Automorphic Functions. Princeton: Princeton Univ Press, 1971
14 Y Yi, W P Zhang. On the 2k-th power mean of inversion of L-functions with the weight of the Gauss sum. Acta Math Sin (Engl Ser), 2004, 20: 175–180
https://doi.org/10.1007/s10114-003-0285-z
[1] Nathan SALAZAR, Yangbo YE. Spectral square moments of a resonance sum for Maass forms[J]. Front. Math. China, 2017, 12(5): 1183-1200.
[2] Huan LIU. Sums of Fourier coefficients of cusp forms of level D twisted by exponential functions[J]. Front. Math. China, 2017, 12(3): 655-673.
[3] Fei HOU. Oscillations of coefficients of symmetric square L-functions over primes[J]. Front. Math. China, 2015, 10(6): 1325-1341.
[4] Liqun HU. Quadratic forms connected with Fourier coefficients of Maass cusp forms[J]. Front. Math. China, 2015, 10(5): 1101-1112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed