|
|
|
Mean-square estimate of automorphic L-functions |
Weili YAO( ) |
| Department of Mathematics, Shanghai University, Shanghai 200444, China |
|
|
|
|
Abstract Let f be a holomorphic Hecke cusp form with even integral weight for the full modular group, and let be a primitive Dirichlet character modulo q. Let be the automorphic L-function attached to f and . We study the mean-square estimate of and establish an asymptotic formula.
|
| Keywords
Automorphic L-function
cusp form
Fourier coe_cient
|
|
Corresponding Author(s):
Weili YAO
|
|
Issue Date: 09 March 2020
|
|
| 1 |
V Blomer. Shifted convolution sums and subconvexity bounds for automorphic L-functions. Int Math Res Not IMRN, 2004, 73: 3905–3926
https://doi.org/10.1155/S1073792804142505
|
| 2 |
V Blomer, G Harcos. Hybrid bounds for twisted L-functions. J Reine Angew Math, 2008, 621: 53–79
https://doi.org/10.1515/CRELLE.2008.058
|
| 3 |
P Deligne. Formes modulaires et représentations l-adiques. In: Séminaire Bourbaki, Vol. 1968/69, Exposés 347–363. Lecture Notes in Math, Vol 179. Berlin: Springer, 1971, 139–172
https://doi.org/10.1007/BFb0058810
|
| 4 |
P Deligne. La conjecture de Weil I. Publ Math Inst Hautes Études Sci, 1974, 43: 273–307
https://doi.org/10.1007/BF02684373
|
| 5 |
W Duke, J B Friedlander, H Iwaniec. Bounds for automorphic L-functions. Invent Math, 1993, 112: 1–8
https://doi.org/10.1007/BF01232422
|
| 6 |
J L Hafner, A Ivić. On sums of Fourier coefficients of cusp forms. Enseign Math, 1989, 35: 375–382
|
| 7 |
G Harcos. An additive problem in the Fourier coefficients of cusp forms. Math Ann, 2003, 326: 347–365
https://doi.org/10.1007/s00208-003-0421-1
|
| 8 |
H Iwaniec. Topics in Classical Automorphic Forms. Grad Stud Math, Vol 17. Providence: Amer Math Soc, 1997
https://doi.org/10.1090/gsm/017
|
| 9 |
Y-K Lau, G S Lü. Sums of Fourier coefficients of cusp forms. Quart J Math, 2011, 62: 687–716
https://doi.org/10.1093/qmath/haq012
|
| 10 |
R A Rankin. Contributions to the theory of Ramanujan's function τ(n) and similar arithmetical functions II. The order of the Fourier coefficients of the integral modular forms. Proc Cambridge Philos Soc, 1939, 35: 351–372
https://doi.org/10.1017/S0305004100021101
|
| 11 |
P Sarnak. Estimates for Rankin-Selberg L-functions and quantum unique ergodicity. J Funct Anal, 2001, 184: 419–453
https://doi.org/10.1006/jfan.2001.3783
|
| 12 |
A Selberg. Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist. Arch Math Naturvid, 1940, 43: 47–50
|
| 13 |
G Shimura. Introduction to the Arithmetic Theory of Automorphic Functions. Princeton: Princeton Univ Press, 1971
|
| 14 |
Y Yi, W P Zhang. On the 2k-th power mean of inversion of L-functions with the weight of the Gauss sum. Acta Math Sin (Engl Ser), 2004, 20: 175–180
https://doi.org/10.1007/s10114-003-0285-z
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|