Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2020, Vol. 15 Issue (3) : 451-465    https://doi.org/10.1007/s11464-020-0842-0
RESEARCH ARTICLE
Least H-eigenvalue of adjacency tensor of hypergraphs with cut vertices
Yizheng FAN(), Zhu ZHU, Yi WANG
School of Mathematical Sciences, Anhui University, Hefei 230601, China
 Download: PDF(307 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Let G be a connected hypergraph with even uniformity, which contains cut vertices. Then G is the coalescence of two nontrivial connected sub-hypergraphs (called branches) at a cut vertex. Let A(G) be the adjacency tensor of G. The least H-eigenvalue of A(G) refers to the least real eigenvalue of A(G) associated with a real eigenvector. In this paper, we obtain a perturbation result on the least H-eigenvalue of A(G) when a branch of G attached at one vertex is relocated to another vertex, and characterize the unique hypergraph whose least H-eigenvalue attains the minimum among all hypergraphs in a certain class of hypergraphs which contain a fixed connected hypergraph.

Keywords Hypergraph      adjacency tensor      least H-eigenvalue      eigenvector      perturbation     
Corresponding Author(s): Yizheng FAN   
Issue Date: 21 July 2020
 Cite this article:   
Yizheng FAN,Zhu ZHU,Yi WANG. Least H-eigenvalue of adjacency tensor of hypergraphs with cut vertices[J]. Front. Math. China, 2020, 15(3): 451-465.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-020-0842-0
https://academic.hep.com.cn/fmc/EN/Y2020/V15/I3/451
1 C Berge. Hypergraphs: Combinatorics of Finite Sets. Amsterdam: North-Holland, 1989
2 K C Chang, K Pearson, T Zhang. Perron-Frobenius theorem for nonnegative tensors. Commun Math Sci, 2008, 6: 507–520
https://doi.org/10.4310/CMS.2008.v6.n2.a12
3 K C Chang, L Qi, T Zhang. A survey on the spectral theory of nonnegative tensors. Numer Linear Algebra Appl, 2013, 20: 891–912
https://doi.org/10.1002/nla.1902
4 J Cooper, A Dutle. Spectra of uniform hypergraphs. Linear Algebra Appl, 2012, 436(9): 3268–3292
https://doi.org/10.1016/j.laa.2011.11.018
5 Y Z Fan, Y H Bao, T Huang. Eigenvariety of nonnegative symmetric weakly irreducible tensors associated with spectral radius and its application to hypergraphs. Linear Algebra Appl, 2019, 564: 72–94
https://doi.org/10.1016/j.laa.2018.11.027
6 Y Z Fan, T Huang, Y H Bao, C L Zhuan-Sun, Y P Li. The spectral symmetry of weakly irreducible nonnegative tensors and connected hypergraphs. Trans Amer Math Soc, 2019, 372(3): 2213–2233
https://doi.org/10.1090/tran/7741
7 Y Z Fan, M Khan, Y Y Tan. The largest H-eigenvalue and spectral radius of Laplacian tensor of non-odd-bipartite generalized power hypergraphs. Linear Algebra Appl, 2016, 504: 487–502
https://doi.org/10.1016/j.laa.2016.04.007
8 Y Z Fan, Y Y Tan, X X Peng, A H Liu. Maximizing spectral radii of uniform hypergraphs with few edges. Discuss Math Graph Theory, 2016, 36: 845–856
https://doi.org/10.7151/dmgt.1906
9 Y Z Fan, Y Wang, Y H Bao, J C Wan, M Li, Z Zhu. Eigenvectors of Laplacian or signless Laplacian of hypergraphs associated with zero eigenvalue. Linear Algebra Appl, 2019, 579: 244–261
https://doi.org/10.1016/j.laa.2019.06.001
10 Y Z Fan, Y Wang, Y B Gao. Minimizing the least eigenvalues of unicyclic graphs with application to spectral spread. Linear Algebra Appl, 2008, 429: 577–588
https://doi.org/10.1016/j.laa.2008.03.012
11 S Friedland, S Gaubert, L Han. Perron-Frobenius theorem for nonnegative multilinear forms and extensions. Linear Algebra Appl, 2013, 438: 738–749
https://doi.org/10.1016/j.laa.2011.02.042
12 S Hu, L Qi. The eigenvectors associated with the zero eigenvalues of the Laplacian and signless Laplacian tensors of a uniform hypergraph. Discrete Appl Math, 2014, 169: 140–151
https://doi.org/10.1016/j.dam.2013.12.024
13 S Hu, L Qi, J Y Shao. Cored hypergraphs, power hypergraphs and their Laplacian H-eigenvalues. Linear Algebra Appl, 2013, 439: 2980–2998
https://doi.org/10.1016/j.laa.2013.08.028
14 M Khan, Y Z Fan. On the spectral radius of a class of non-odd-bipartite even uniform hypergraphs. Linear Algebra Appl, 2015, 480: 93–106
https://doi.org/10.1016/j.laa.2015.04.005
15 M Khan, Y Z Fan, Y Y Tan. The H-spectra of a class of generalized power hypergraphs. Discrete Math, 2016, 339: 1682–1689
https://doi.org/10.1016/j.disc.2016.01.016
16 H Li, J Y Shao, L Qi. The extremal spectral radii of k-uniform supertrees. J Comb Optim, 2016, 32: 741–764
https://doi.org/10.1007/s10878-015-9896-4
17 L H Lim. Singular values and eigenvalues of tensors: a variational approach. Proceedings of the 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005, 129–132
18 L Lu, S Man. Connected hypergraphs with small spectral radius. Linear Algebra Appl, 2016, 509: 206–227
https://doi.org/10.1016/j.laa.2016.07.013
19 V Nikiforov. Hypergraphs and hypermatrices with symmetric spectrum. Linear Algebra Appl, 2017, 519: 1–18
https://doi.org/10.1016/j.laa.2016.12.038
20 L Qi. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302–1324
https://doi.org/10.1016/j.jsc.2005.05.007
21 J Y Shao, H Y Shan, B F Wu. Some spectral properties and characterizations of connected odd-bipartite uniform hypergraphs. Linear Multilinear Algebra, 2015, 63: 2359–2372
https://doi.org/10.1080/03081087.2015.1009061
22 Y Yang, Q Yang. Further results for Perron-Frobenius theorem for nonnegative tensors. SIAM J Matrix Anal Appl, 2010, 31(5): 2517–2530
https://doi.org/10.1137/090778766
23 Y Yang, Q Yang. Further results for Perron-Frobenius theorem for nonnegative tensors II. SIAM J Matrix Anal Appl, 2011, 32(4): 1236–1250
https://doi.org/10.1137/100813671
24 Y Yang, Q Yang. On some properties of nonnegative weakly irreducible tensors. arXiv: 1111.0713v2
[1] Wen-Huan WANG, Ling YUAN. Uniform supertrees with extremal spectral radii[J]. Front. Math. China, 2020, 15(6): 1211-1229.
[2] Jun HE, Yanmin LIU, Junkang TIAN, Xianghu LIU. Upper bounds for signless Laplacian Z-spectral radius of uniform hypergraphs[J]. Front. Math. China, 2019, 14(1): 17-24.
[3] Sanzheng QIAO, Yimin WEI. Acute perturbation of Drazin inverse and oblique projectors[J]. Front. Math. China, 2018, 13(6): 1427-1445.
[4] Dongdong LIU, Wen LI, Michael K. NG, Seak-Weng VONG. Uniqueness and perturbation bounds for sparse non-negative tensor equations[J]. Front. Math. China, 2018, 13(4): 849-874.
[5] Yuan HOU, An CHANG, Lei ZHANG. Largest H-eigenvalue of uniform s-hypertrees[J]. Front. Math. China, 2018, 13(2): 301-312.
[6] Xiying YUAN, Xuelian SI, Li ZHANG. Ordering uniform supertrees by their spectral radii[J]. Front. Math. China, 2017, 12(6): 1393-1408.
[7] Dongmei CHEN, Zhibing CHEN, Xiao-Dong ZHANG. Spectral radius of uniform hypergraphs and degree sequences[J]. Front. Math. China, 2017, 12(6): 1279-1288.
[8] Changjiang BU,Yamin FAN,Jiang ZHOU. Laplacian and signless Laplacian Z-eigenvalues of uniform hypergraphs[J]. Front. Math. China, 2016, 11(3): 511-520.
[9] Junjie YUE,Liping ZHANG,Mei LU. Largest adjacency, signless Laplacian, and Laplacian H-eigenvalues of loose paths[J]. Front. Math. China, 2016, 11(3): 623-645.
[10] Kaifan YANG,Hongke DU. Perturbations of Drazin invertible operators[J]. Front. Math. China, 2015, 10(1): 199-208.
[11] Yisheng SONG, Liqun QI. Positive eigenvalue-eigenvector of nonlinear positive mappings[J]. Front Math Chin, 2014, 9(1): 181-199.
[12] Jinshan XIE, An CHANG. H-Eigenvalues of signless Laplacian tensor for an even uniform hypergraph[J]. Front Math Chin, 2013, 8(1): 107-127.
[13] Di LIU. Strong convergence rate of principle of averaging for jump-diffusion processes[J]. Front Math Chin, 2012, 7(2): 305-320.
[14] Sitao LING, Tongsong JIANG. New method for general Kennaugh’s pseudoeigenvalue equation in radar polarimetry[J]. Front Math Chin, 2012, 7(1): 85-95.
[15] MA Jipu. Complete rank theorem of advanced calculus and singularities of bounded linear operators[J]. Front. Math. China, 2008, 3(2): 305-316.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed