Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2020, Vol. 15 Issue (5) : 959-984    https://doi.org/10.1007/s11464-020-0858-5
RESEARCH ARTICLE
Dynamical behaviors for generalized pendulum type equations with p-Laplacian
Yanmin NIU1, Xiong LI2()
1. School of Mathematical Sciences, Ocean University of China, Qingdao 266100, China
2. Laboratory of Mathematics and Complex Systems (Ministry of Education), School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China
 Download: PDF(357 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We consider a pendulum type equation with p-Laplacian (ϕp(x))+Gx(t,x)=p(t), where ϕp(u)=|u|p2u,p>1,G(t,x) and p(t) are 1-periodic about every variable. The solutions of this equation present two interesting behaviors. On the one hand, by applying Moser's twist theorem, we find infinitely many invariant tori whenever 01p(t)dt=0, which yields the bounded-ness of all solutions and the existence of quasi-periodic solutions starting at t = 0 on the invariant tori. On the other hand, if p(t) = 0 and Gx(t,x) has some specific forms, we find a full symbolic dynamical system made by solutions which oscillate between any two different trivial solutions of the equation. Such chaotic solutions stay close to the trivial solutions in some fixed intervals, according to any prescribed coin-tossing sequence.

Keywords p-Laplacian      invariant tori      quasi-periodic solutions      boundedness      complex dynamics     
Corresponding Author(s): Xiong LI   
Issue Date: 19 November 2020
 Cite this article:   
Yanmin NIU,Xiong LI. Dynamical behaviors for generalized pendulum type equations with p-Laplacian[J]. Front. Math. China, 2020, 15(5): 959-984.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-020-0858-5
https://academic.hep.com.cn/fmc/EN/Y2020/V15/I5/959
1 F Alessio, L Jeanjean, P Montecchiari. Stationary layered solutions in ℝ2 for a class of non autonomous Allen-Cahn equations. Calc Var Partial Differential Equations, 2000, 11: 177–202
https://doi.org/10.1007/s005260000036
2 S B, AngenentMallet-Paret J, Peletier L A. Stable transition layers in a semilinear boundary value problem. J Differential Equations, 1987, 67: 212–242
https://doi.org/10.1016/0022-0396(87)90147-1
3 J Byeon, P H Rabinowitz. On a phase transition model. Calc Var Partial Differential Equations, 2013, 47: 1–23
https://doi.org/10.1007/s00526-012-0507-2
4 T R Ding, F Zanolin. Subharmonic solutions of second-order nonlinear equations: a time map approach. Nonlinear Anal, 1993, 20: 509–532
https://doi.org/10.1016/0362-546X(93)90036-R
5 H Huang, R Yuan. Boundedness of solutions and existence of invariant tori for generalized pendulum type equation. Chinese Sci Bull, 1997, 42: 1673–1675
https://doi.org/10.1007/BF02882662
6 M Levi. KAM theory for particles in periodic potential. Ergodic Theory Dynam Systems, 1990, 10: 777–785
https://doi.org/10.1017/S0143385700005897
7 J, Mawhin M Willem. Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations. J Differential Equations, 1984, 52: 264–287
https://doi.org/10.1016/0022-0396(84)90180-3
8 J Mawhin, M Willem. Critical Point Theory and Hamiltonian Systems. Appl Math Sci, Vol 74. Berlin: Springer-Verlag, 1989
https://doi.org/10.1007/978-1-4757-2061-7
9 J Moser. On invariant curves of area-preserving mappings of an annulus. Nachr Akad Wiss Göttingen Math Phys Kl, 1962, 2:1–20
10 J Moser. Stable and Random Motions in Dynamical Systems with Special Emphasis on Celestial Mechanics. Ann of Math Stud, Vol 77. Princeton: Princeton Univ Press, 1973
11 J Moser. Quasiperiodic solutions of nonlinear elliptic partial differential equations. Bull Braz Math Soc (N S), 1989, 20: 29–45
https://doi.org/10.1007/BF02585466
12 R Ortega. Twist mappings, invariant curves and periodic differential equations. In: Grossinho M R, Ramos M, Rebelo C, Sanchez L, eds. Nonlinear Analysis and its Applications to Differential Equations. Progr Nonlinear Differential Equations Appl, Vol 43. New York: Springer, 2001, 85–112
https://doi.org/10.1007/978-1-4612-0191-5_5
13 D Papini, F Zanolin. Periodic points and chaotic-like dynamics of planar maps associated to nonlinear Hill's equations with indefinite weight. Georgian Math J, 2002, 9: 339–366
14 D Papini, F Zanolin. On the periodic boundary value problem and chaotic-like dynamics for nonlinear Hill's equations. Adv Nonlinear Stud, 2004, 4: 71–91
https://doi.org/10.1515/ans-2004-0105
15 D Papini, F Zanolin. Fix points, periodic points, and coin-tossing sequences for mappings defined on two-dimensional cells. Fixed Point Theory Appl, 2004, 2004: 113–134
https://doi.org/10.1155/S1687182004401028
16 D Papini, F Zanolin. Some results on periodic points and chaotic dynamics arising from the study of the nonlinear Hill equations. Rend Semin Mat Univ Politec Torino, 2007, 65: 115{157
17 D Papini, F Zanolin. Complex dynamics in a ODE model related to phase transition. J Dynam Differential Equations, 2017, 29: 1215–1232
https://doi.org/10.1007/s10884-015-9514-2
18 P H Rabinowitz, E Stredulinsky. On a class of infinite transition solutions for an Allen-Cahn model equation. Discrete Contin Dyn Syst, 2008, 21: 319–332
https://doi.org/10.3934/dcds.2008.21.319
19 M Willem. Oscillations forcées de systemes hamiltoniens. Publ Mat, 1981, (15 pp)
20 J G You. Invariant tori and Lagrange stability of pendulum-type equations. J Differential Equations, 1990, 85: 54–65
https://doi.org/10.1016/0022-0396(90)90088-7
[1] Mu-Fa CHEN. Efficient algorithm for principal eigenpair of discrete p-Laplacian[J]. Front. Math. China, 2018, 13(3): 509-524.
[2] Shaozhen XU, Dunyan YAN. A restriction theorem for oscillatory integral operator with certain polynomial phase[J]. Front. Math. China, 2017, 12(4): 967-980.
[3] Feng DU,Jing MAO. Reilly-type inequalities for p-Laplacian on compact Riemannian manifolds[J]. Front. Math. China, 2015, 10(3): 583-594.
[4] Mu-Fa CHEN,Lingdi WANG,Yuhui ZHANG. Mixed eigenvalues of p-Laplacian[J]. Front. Math. China, 2015, 10(2): 249-274.
[5] Mu-Fa CHEN,Lingdi WANG,Yuhui ZHANG. Mixed eigenvalues of discrete p-Laplacian[J]. Front. Math. China, 2014, 9(6): 1261-1292.
[6] Xiumei XING,Lei JIAO. Boundedness of semilinear Duffing equations with singularity[J]. Front. Math. China, 2014, 9(6): 1427-1452.
[7] Guowei LIU, Caidi ZHAO, Juan CAO. H4-Boundedness of pullback attractor for a 2D non-Newtonian fluid flow[J]. Front Math Chin, 2013, 8(6): 1377-1390.
[8] LU Shanzhen. Marcinkiewicz integral with rough kernels[J]. Front. Math. China, 2008, 3(1): 1-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed