Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2020, Vol. 15 Issue (6) : 1211-1229    https://doi.org/10.1007/s11464-020-0873-6
RESEARCH ARTICLE
Uniform supertrees with extremal spectral radii
Wen-Huan WANG(), Ling YUAN
Department of Mathematics, Shanghai University, Shanghai 200444, China
 Download: PDF(439 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A supertree is a connected and acyclic hypergraph. We investigate the supertrees with the extremal spectral radii among several kinds of r-uniform supertrees. First, by using the matching polynomials of supertrees, a new and useful grafting operation is proposed for comparing the spectral radii of supertrees, and its applications are shown to obtain the supertrees with the extremal spectral radii among some kinds of r-uniform supertrees. Second, the supertree with the third smallest spectral radius among the r-uniform supertrees is deduced. Third, among the r-uniform supertrees with a given maximum degree, the supertree with the smallest spectral radius is derived. At last, among the r-uniform starlike supertrees, the supertrees with the smallest and the largest spectral radii are characterized.

Keywords Hypergraph      spectral radius      supertree      matching polynomial     
Corresponding Author(s): Wen-Huan WANG   
Issue Date: 05 February 2021
 Cite this article:   
Wen-Huan WANG,Ling YUAN. Uniform supertrees with extremal spectral radii[J]. Front. Math. China, 2020, 15(6): 1211-1229.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-020-0873-6
https://academic.hep.com.cn/fmc/EN/Y2020/V15/I6/1211
1 G J Clark, J N Cooper. On the adjacency spectra of hypertrees. Electron J Combin, 2018, 25: P2.48
https://doi.org/10.37236/7442
2 J Cooper, A Dutle. Spectra of uniform hypergraphs. Linear Algebra Appl, 2012, 436: 3268–3292
https://doi.org/10.1016/j.laa.2011.11.018
3 Y Z Fan, Y Y Tan, X X Peng, A H Liu. Maximizing spectral radii of uniform hyper-graphs with few edges. Discuss Math Graph Theory, 2016, 36: 845–856
https://doi.org/10.7151/dmgt.1906
4 H Y Guo, B Zhou. On the spectral radius of uniform hypertrees. Linear Algebra Appl, 2018, 558: 236–249
https://doi.org/10.1016/j.laa.2018.07.035
5 S L Hu, L Q Qi, J Y Shao. Cored hypergraphs, power hypergraphs and their Laplacian H-eigenvalues. Linear Algebra Appl, 2013, 439: 2980–2998
https://doi.org/10.1016/j.laa.2013.08.028
6 M U Khan, Y Z Fan. On the spectral radius of a class of non-odd-bipartite even uniform hypergraphs. Linear Algebra Appl, 2015, 480: 93–106
https://doi.org/10.1016/j.laa.2015.04.005
7 H H Li, J Y Shao, L Q Qi. The extremal spectral radii of k-uniform supertrees. J Comb Optim, 2016, 32: 741–764
https://doi.org/10.1007/s10878-015-9896-4
8 W Li, K N Michael. Some bounds for the spectral radius of nonnegative tensors. Numer Math, 2015, 130(2): 315–335
https://doi.org/10.1007/s00211-014-0666-5
9 L H Lim. Singular values and eigenvalues of tensors: a variational approach. In: Proc the 1st IEEE Intl Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP'05. 2005, 129–132
10 L Lovász, J Pelikán. On the eigenvalues of trees. Period Math Hungar, 1973, 3: 175–182
https://doi.org/10.1007/BF02018473
11 C Lv, L H You, X D Zhang. A sharp upper bound on the spectral radius of a non-negative k-uniform tensor and its applications to (directed) hypergraphs. J Inequal Appl, 2020, 32: 1–16
https://doi.org/10.1186/s13660-020-2305-2
12 C Ouyang, L Q Qi, X Y Yuan. The first few unicyclic and bicyclic hypergraphs with largest spectral radii. Linear Algebra Appl, 2017, 527: 141–162
https://doi.org/10.1016/j.laa.2017.04.008
13 L Q Qi. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302–1324
https://doi.org/10.1016/j.jsc.2005.05.007
14 L Su, L Y Kang, H H Li, E F Shan. The matching polynomials and spectral radii of uniform supertrees. Electron J Combin, 2018, 25: P4.13
https://doi.org/10.37236/7839
15 L Su, L Y Kang, H H Li, E F Shan. The largest spectral radius of uniform hypertrees with a given size of matching. Linear Multilinear Algebra, 2020, 68: 1779–1791
https://doi.org/10.1080/03081087.2018.1560389
16 W H Wang. The minimal spectral radius of the r-uniform supertree having two vertices of maximum degree. Linear Multilinear Algebra, doi.org/10.1080/03081087.2020.1819188
17 P Xiao, L G Wang. The maximum spectral radius of uniform hypergraphs with given number of pendant edges. Linear Multilinear Algebra, 2019, 67: 1392–1403
https://doi.org/10.1080/03081087.2018.1453471
18 P Xiao, L G Wang, Y F Du. The first two largest spectral radii of uniform supertrees with given diameter. Linear Algebra Appl, 2018, 536: 103–119
https://doi.org/10.1016/j.laa.2017.09.009
19 P Xiao, L G Wang, Y Lu. The maximum spectral radii of uniform supertrees with given degree sequences. Linear Algebra Appl, 2017, 523: 33–45
https://doi.org/10.1016/j.laa.2017.02.018
20 L H You, X H Huang, X Y Yuan. Sharp bounds for spectral radius of nonnegative weakly irreducible tensors. Front Math China, 2019, 14: 989–1015
https://doi.org/10.1007/s11464-019-0797-1
21 X Y Yuan, J Y Shao, H Y Shan. Ordering of some uniform supertrees with larger spectral radii. Linear Algebra Appl, 2016, 495: 206–222
https://doi.org/10.1016/j.laa.2016.01.031
22 X Y Yuan, M Zhang, M Lu. Some upper bounds on the eigenvalues of uniform hyper-graphs. Linear Algebra Appl, 2015, 484: 540–549
https://doi.org/10.1016/j.laa.2015.06.023
23 J B Zhang, J P Li. The maximum spectral radius of k-uniform hypergraphs with r pendent vertices. Linear Multilinear Algebra, 2019, 67: 1062–1073
https://doi.org/10.1080/03081087.2018.1442811
24 L Zhang, A Chang. Spectral radius of r-uniform supertrees with perfect matchings. Front Math China, 2018, 13: 1489{1499
https://doi.org/10.1007/s11464-018-0737-5
25 W Zhang, L Y Kang, E F Shan, Y Q Bai. The spectra of uniform hypertrees. Linear Algebra Appl, 2017, 533: 84–94
https://doi.org/10.1016/j.laa.2017.07.018
[1] Cunxiang DUAN, Ligong WANG, Peng XIAO. Largest signless Laplacian spectral radius of uniform supertrees with diameter and pendent edges (vertices)[J]. Front. Math. China, 2020, 15(6): 1105-1120.
[2] Yizheng FAN, Zhu ZHU, Yi WANG. Least H-eigenvalue of adjacency tensor of hypergraphs with cut vertices[J]. Front. Math. China, 2020, 15(3): 451-465.
[3] Gang WANG, Yuan ZHANG, YijuWANG WANG. Brauer-type bounds for Hadamard product of nonnegative tensors[J]. Front. Math. China, 2020, 15(3): 555-570.
[4] Lihua YOU, Xiaohua HUANG, Xiying YUAN. Sharp bounds for spectral radius of nonnegative weakly irreducible tensors[J]. Front. Math. China, 2019, 14(5): 989-1015.
[5] Kinkar Chandra DAS, Huiqiu LIN, Jiming GUO. Distance signless Laplacian eigenvalues of graphs[J]. Front. Math. China, 2019, 14(4): 693-713.
[6] Jun HE, Yanmin LIU, Junkang TIAN, Xianghu LIU. Upper bounds for signless Laplacian Z-spectral radius of uniform hypergraphs[J]. Front. Math. China, 2019, 14(1): 17-24.
[7] Lei ZHANG, An CHANG. Spectral radius of r-uniform supertrees with perfect matchings[J]. Front. Math. China, 2018, 13(6): 1489-1499.
[8] Sanzheng QIAO, Yimin WEI. Acute perturbation of Drazin inverse and oblique projectors[J]. Front. Math. China, 2018, 13(6): 1427-1445.
[9] Yuan HOU, An CHANG, Lei ZHANG. Largest H-eigenvalue of uniform s-hypertrees[J]. Front. Math. China, 2018, 13(2): 301-312.
[10] Xiying YUAN, Xuelian SI, Li ZHANG. Ordering uniform supertrees by their spectral radii[J]. Front. Math. China, 2017, 12(6): 1393-1408.
[11] Dongmei CHEN, Zhibing CHEN, Xiao-Dong ZHANG. Spectral radius of uniform hypergraphs and degree sequences[J]. Front. Math. China, 2017, 12(6): 1279-1288.
[12] Changjiang BU,Yamin FAN,Jiang ZHOU. Laplacian and signless Laplacian Z-eigenvalues of uniform hypergraphs[J]. Front. Math. China, 2016, 11(3): 511-520.
[13] Junjie YUE,Liping ZHANG,Mei LU. Largest adjacency, signless Laplacian, and Laplacian H-eigenvalues of loose paths[J]. Front. Math. China, 2016, 11(3): 623-645.
[14] Hongmei YAO,Bingsong LONG,Changjiang BU,Jiang ZHOU. lk,s-Singular values and spectral radius of partially symmetric rectangular tensors[J]. Front. Math. China, 2016, 11(3): 605-622.
[15] Chen LING, Liqun QI. lk,s-Singular values and spectral radius of rectangular tensors[J]. Front Math Chin, 2013, 8(1): 63-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed