Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2021, Vol. 16 Issue (1) : 29-47    https://doi.org/10.1007/s11464-021-0893-x
RESEARCH ARTICLE
Grothendieck rings of a class of Hopf algebras of Kac-Paljutkin type
Jialei CHEN1, Shilin YANG1(), Dingguo WANG2
1. College of Mathematics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
2. School of Mathematical Sciences, Qufu Normal University, Qufu 273165, China
 Download: PDF(337 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We construct the Grothendieck rings of a class of 2n2 dimensional semisimple Hopf Algebras H2n2,which can be viewed as a generalization of the 8 dimensional Kac-Paljutkin Hopf algebra H8.All irreducible H2n2-modules are classified. Furthermore, we describe the Grothendieck rings r(H2n2) by generators and relations explicitly.

Keywords Grothendieck ring      Hopf algebra      irreducible module     
Corresponding Author(s): Shilin YANG   
Issue Date: 26 March 2021
 Cite this article:   
Jialei CHEN,Shilin YANG,Dingguo WANG. Grothendieck rings of a class of Hopf algebras of Kac-Paljutkin type[J]. Front. Math. China, 2021, 16(1): 29-47.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-021-0893-x
https://academic.hep.com.cn/fmc/EN/Y2021/V16/I1/29
1 A E Alaoui. The character table for a Hopf algebra arising from the Drinfel′d double. J Algebra, 2003, 265: 478–495
https://doi.org/10.1016/S0021-8693(03)00136-4
2 M Beattie, S Dǎscǎlescu, L Grünenfelder. Constructing pointed Hopf algebras by Ore extensions. J Algebra, 2000, 225: 743–770
https://doi.org/10.1006/jabr.1999.8148
3 H Chen, F V Oystaeyen, Y Zhang. The Green rings of Taft algebras. Proc Amer Math Soc, 2014, 142: 765–775
https://doi.org/10.1090/S0002-9939-2013-11823-X
4 C Cibils. A quiver quantum groups. Comm Math Phys, 1993, 157: 459–477
https://doi.org/10.1007/BF02096879
5 H Huang, F V Oystaeyen, Y Yang, Y Zhang. The Green rings of pointed tensor categories of finite type. J Pure Appl Algebra, 2014, 218: 333–342
https://doi.org/10.1016/j.jpaa.2013.06.005
6 H Huang, Y Yang. The Green rings of minimal Hopf quivers. Proc Edinb Math Soc, 2014, 59: 107–141
https://doi.org/10.1017/S0013091515000085
7 G I Kac, V G Paljutkin. Finite ring groups. Trudy Moskov Mat Obshch, 1966, 15: 224–261 (in Russian)
8 C Kassel. Quantum Groups. Grad Texts in Math, Vol 155. New York: Springer-Verlag, 1995
https://doi.org/10.1007/978-1-4612-0783-2
9 L Li, Y Zhang. The Green rings of the Generalized Taft algebras. Contemp Math, 2013, 585: 275–288
https://doi.org/10.1090/conm/585/11618
10 Y Li, N Hu. The Green rings of the 2-rank Taft algebra and its two relatives twisted. J Algebra, 2014, 410: 1–35
https://doi.org/10.1016/j.jalgebra.2014.04.006
11 M Lorenz. Representations of finite-dimensional Hopf algebras. J Algebra, 1997, 188: 476–505
https://doi.org/10.1006/jabr.1996.6827
12 S Majid. Foundations of Quantum Group Theory. Cambridge: Cambridge Univ Press, 1995
https://doi.org/10.1017/CBO9780511613104
13 A Masuoka. Semisimple Hopf algebras of dimension 6, 8. Israel J Math, 1995, 92: 361–373
https://doi.org/10.1007/BF02762089
14 S Montgomery. Hopf Algebras and Their Actions on Rings. CBMS Reg Conf Ser Math, No 82. Providence: Amer Math Soc, 1993
https://doi.org/10.1090/cbms/082
15 A N Panov. Ore extensions of Hopf algebras. Math Notes, 2003, 74: 401–410
https://doi.org/10.1023/A:1026115004357
16 D Pansera. A class of semisimple Hopf algebras acting on quantum polynomial algebras. In: Leroy A, Lomp C, López-Permouth S, Oggier F, eds. Rings, Modules and Codes. Contemp Math, Vol 727. Providence: Amer Math Soc, 2019, 303–316
https://doi.org/10.1090/conm/727/14643
17 Y Shi. Finite dimensional Hopf algebras over Kac-Paljutkin algebra H8.Rev Un Mat Argentina, 2019, 60: 265–298
18 D Su, S Yang. Automorphism group of representation ring of the weak Hopf algebra H8 ˜. Czechoslovak Math J, 2018, 68: 1131–1148
19 D Su, S Yang. Green rings of weak Hopf algebras based on generalized Taft algebras. Period Math Hunger, 2018, 76: 229–242
https://doi.org/10.1007/s10998-017-0221-0
20 D Su, S Yang. Representation ring of small quantum group U‾q(sl2).J Math Phys, 2017, 58: 091704
21 M E Sweedler. Hopf Algebras. New York: Benjamin, 1969
22 D Wang, J Zhang, G Zhuang. Primitive cohomology of Hopf algebras. J Algebra, 2016, 464: 36–96
https://doi.org/10.1016/j.jalgebra.2016.07.003
23 Z Wang, L You, H Chen. Representations of Hopf-Ore extensions of group algebras and pointed Hopf algebras of rank one. Algebr Represent Theory, 2015, 18: 801–830
https://doi.org/10.1007/s10468-015-9517-z
24 S J Witherspoon. The representation ring of the quantum double of a finite group. J Algebra, 1996, 179: 305–329
https://doi.org/10.1006/jabr.1996.0014
25 Y Xu, D Wang, J Chen. Analogues of quantum Schubert cell algebras in PBW- deformations of quantum groups. J Algebra Appl, 2016, 15: 1650179
https://doi.org/10.1142/S0219498816501796
26 S Yang. Representation of simple pointed Hopf algebras. J Algebra Appl, 2004, 3: 91–104
https://doi.org/10.1142/S021949880400071X
[1] Haijun CAO. Weak rigid monoidal category[J]. Front. Math. China, 2017, 12(1): 19-33.
[2] Bingliang SHEN,Ling LIU. Center construction and duality of category of Hom-Yetter-Drinfeld modules over monoidal Hom-Hopf algebras[J]. Front. Math. China, 2017, 12(1): 177-197.
[3] Quanguo CHEN,Dingguo WANG,Xiaodan KANG. Twisted partial coactions of Hopf algebras[J]. Front. Math. China, 2017, 12(1): 63-86.
[4] Tingting JIA,Ruju ZHAO,Libin LI. Automorphism group of Green ring of Sweedler Hopf algebra[J]. Front. Math. China, 2016, 11(4): 921-932.
[5] Genqiang LIU,Yueqiang ZHAO. Irreducible A(1)1 -modules from modules over two-dimensional non-abelian Lie algebra[J]. Front. Math. China, 2016, 11(2): 353-363.
[6] Yongsheng CHENG,Xiufu ZHANG. Representations and categorical realization of Hom-quasi-Hopf algebras[J]. Front. Math. China, 2015, 10(6): 1263-1281.
[7] Min LI, Xiuling WANG. Factorization of simple modules for certain restricted two-parameter quantum groups[J]. Front Math Chin, 2013, 8(1): 169-190.
[8] Guohua LIU, Quanguo CHEN, Haixing ZHU. Transmutation theory of a coquasitriangular weak Hopf algebra[J]. Front Math Chin, 2011, 6(5): 855-869.
[9] Tianshui MA, Haiying LI, Shuanhong WANG. A class of new braided Hopf algebras[J]. Front Math Chin, 2011, 6(2): 293-308.
[10] CHENG Yongsheng, SU Yucai. Generalized Verma modules over some Block algebras[J]. Front. Math. China, 2008, 3(1): 37-47.
[11] YANG Shilin. Automorphism groups of pointed Hopf algebras[J]. Front. Math. China, 2007, 2(2): 305-316.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed