|
|
|
Singular integral operators on product domains along twisted surfaces |
Ahmad AL-SALMAN( ) |
| Department of Mathematics, Sultan Qaboos University, Sultanate, Oman Department of Mathematics, Yarmouk University, Irbid, Jordan |
|
| 1 |
H Al-Qassem, A Al-Salman.Lp Boundedness of a class of singular integral operators with rough kernels. Turkish J Math, 2001, 25(4): 519–533
https://doi.org/10.1007/s00041-018-09660-y
|
| 2 |
H Al-Qassem, Y Pan. Lp boundedness for singular integrals with rough kernels on product domains. Hokkaido Math J, 2002, 31: 555–613
https://doi.org/10.14492/hokmj/1350911903
|
| 3 |
A Al-Salman, H Al-Qassem, Y Pan. Singular integrals on product domains. Indiana Univ Math J, 2006, 55(1): 369–387
https://doi.org/10.1512/iumj.2006.55.2626
|
| 4 |
A Al-Salman, Y Pan. Singular integrals with rough kernels in Llog+L(Sn–1). J Lond Math Soc (2), 2002, 66:: 153–174
https://doi.org/10.1112/S0024610702003241
|
| 5 |
J Duoandikoetxea. Multiple singular integrals and maximal functions along hyper-surfaces. Ann Inst Fourier (Grenoble), 1986, 36: 185–206
https://doi.org/10.5802/aif.1073
|
| 6 |
D Fan, K Guo, Y Pan. Singular integrals with rough kernels on product spaces. Hokkaido Math J, 1999, 28: 435–460
https://doi.org/10.14492/hokmj/1351001230
|
| 7 |
D Fan, Y Pan. Singular integral operators with rough kernels supported by subvarieties. Amer J Math, 1997, 119: 799–839
https://doi.org/10.1353/ajm.1997.0024
|
| 8 |
R Fefferman. Singular integrals on product domains. Bull Amer Math Soc, 1981, 4: 195–201
https://doi.org/10.1090/S0273-0979-1981-14883-7
|
| 9 |
R Fefferman, E M Stein. Singular integrals on product spaces. Adv Math, 1982, 45: 117–143
https://doi.org/10.1016/S0001-8708(82)80001-7
|
| 10 |
Y Jiang, S Lu. A class of singular integral operators with rough kernels on product domains. Hokkaido Math J, 1995, 24: 1–7
https://doi.org/10.14492/hokmj/1380892533
|
| 11 |
M Keitoku, E Sato. Block spaces on the unit sphere in Rn. Proc Amer Math Soc, 1993, 119: 453–455
https://doi.org/10.2307/2159928
|
| 12 |
E M Stein. Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals. Princeton Math Ser, 43. Princeton: Princeton Univ Press, 1993
https://doi.org/10.1515/9781400883929
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|