Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2021, Vol. 16 Issue (1) : 13-28    https://doi.org/10.1007/s11464-021-0911-z
RESEARCH ARTICLE
Singular integral operators on product domains along twisted surfaces
Ahmad AL-SALMAN()
Department of Mathematics, Sultan Qaboos University, Sultanate, Oman Department of Mathematics, Yarmouk University, Irbid, Jordan
 Download: PDF(299 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We introduce a class of singular integral operators on product domains along twisted surfaces. We prove that the operators are bounded on Lp provided that the kernels satisfy weak conditions.

Keywords Singular integral operators on product domains      rough kernels      Lp estimates      Hardy Littlewood maximal function      truncated maximal singular integrals      twisted surfaces      block spaces     
Corresponding Author(s): Ahmad AL-SALMAN   
Issue Date: 26 March 2021
 Cite this article:   
Ahmad AL-SALMAN. Singular integral operators on product domains along twisted surfaces[J]. Front. Math. China, 2021, 16(1): 13-28.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-021-0911-z
https://academic.hep.com.cn/fmc/EN/Y2021/V16/I1/13
1 H Al-Qassem, A Al-Salman.Lp Boundedness of a class of singular integral operators with rough kernels. Turkish J Math, 2001, 25(4): 519–533
https://doi.org/10.1007/s00041-018-09660-y
2 H Al-Qassem, Y Pan. Lp boundedness for singular integrals with rough kernels on product domains. Hokkaido Math J, 2002, 31: 555–613
https://doi.org/10.14492/hokmj/1350911903
3 A Al-Salman, H Al-Qassem, Y Pan. Singular integrals on product domains. Indiana Univ Math J, 2006, 55(1): 369–387
https://doi.org/10.1512/iumj.2006.55.2626
4 A Al-Salman, Y Pan. Singular integrals with rough kernels in Llog+L(Sn–1). J Lond Math Soc (2), 2002, 66:: 153–174
https://doi.org/10.1112/S0024610702003241
5 J Duoandikoetxea. Multiple singular integrals and maximal functions along hyper-surfaces. Ann Inst Fourier (Grenoble), 1986, 36: 185–206
https://doi.org/10.5802/aif.1073
6 D Fan, K Guo, Y Pan. Singular integrals with rough kernels on product spaces. Hokkaido Math J, 1999, 28: 435–460
https://doi.org/10.14492/hokmj/1351001230
7 D Fan, Y Pan. Singular integral operators with rough kernels supported by subvarieties. Amer J Math, 1997, 119: 799–839
https://doi.org/10.1353/ajm.1997.0024
8 R Fefferman. Singular integrals on product domains. Bull Amer Math Soc, 1981, 4: 195–201
https://doi.org/10.1090/S0273-0979-1981-14883-7
9 R Fefferman, E M Stein. Singular integrals on product spaces. Adv Math, 1982, 45: 117–143
https://doi.org/10.1016/S0001-8708(82)80001-7
10 Y Jiang, S Lu. A class of singular integral operators with rough kernels on product domains. Hokkaido Math J, 1995, 24: 1–7
https://doi.org/10.14492/hokmj/1380892533
11 M Keitoku, E Sato. Block spaces on the unit sphere in Rn. Proc Amer Math Soc, 1993, 119: 453–455
https://doi.org/10.2307/2159928
12 E M Stein. Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals. Princeton Math Ser, 43. Princeton: Princeton Univ Press, 1993
https://doi.org/10.1515/9781400883929
[1] Laith HAWAWSHEH, Ahmad AL-SALMAN. Lp Estimates of certain rough parametric Marcinkiewicz functions[J]. Front. Math. China, 2019, 14(5): 867-879.
[2] LU Shanzhen. Applications of some block spaces to singular integrals[J]. Front. Math. China, 2007, 2(1): 61-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed