Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2021, Vol. 16 Issue (2) : 303-324    https://doi.org/10.1007/s11464-021-0919-4
RESEARCH ARTICLE
Optimal stopping time on discounted semi-Markov processes
Fang CHEN1, Xianping GUO1, Zhong-Wei LIAO2()
1. School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China
2. College of Education for the Future, Beijing Normal University, Beijing 100875, China
 Download: PDF(327 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper attempts to study the optimal stopping time for semi- Markov processes (SMPs) under the discount optimization criteria with unbounded cost rates. In our work, we introduce an explicit construction of the equivalent semi-Markov decision processes (SMDPs). The equivalence is embodied in the expected discounted cost functions of SMPs and SMDPs, that is, every stopping time of SMPs can induce a policy of SMDPs such that the value functions are equal, and vice versa. The existence of the optimal stopping time of SMPs is proved by this equivalence relation. Next, we give the optimality equation of the value function and develop an effective iterative algorithm for computing it. Moreover, we show that the optimal and ε-optimal stopping time can be characterized by the hitting time of the special sets. Finally, to illustrate the validity of our results, an example of a maintenance system is presented in the end.

Keywords Optimal stopping time      semi-Markov processes (SMPs)      value function      semi-Markov decision processes (SMDPs)      optimal policy      iterative lgorithm     
Corresponding Author(s): Zhong-Wei LIAO   
Issue Date: 01 June 2021
 Cite this article:   
Fang CHEN,Xianping GUO,Zhong-Wei LIAO. Optimal stopping time on discounted semi-Markov processes[J]. Front. Math. China, 2021, 16(2): 303-324.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-021-0919-4
https://academic.hep.com.cn/fmc/EN/Y2021/V16/I2/303
1 N Bäuerle, A Popp. Risk-sensitive stopping problems for continuous-time Markov chains. Stochastics, 2018, 90: 411–431
https://doi.org/10.1080/17442508.2017.1357724
2 N Bäuerle, U Rieder. Markov Decision Processes with Applications to Finance. Heidelberg: Springer, 2011
https://doi.org/10.1007/978-3-642-18324-9
3 F A Boshuizen, J M Gouweleeuw. General optimal stopping theorems for semi-Markov processes. Adv in Appl Probab, 1993, 25: 825–846
https://doi.org/10.1017/S0001867800025775
4 B Cekyay, S Ozekici. Mean time to failure and availability of semi-Markov missions with maximal repair. European J Oper Res, 2010, 207: 1442–1454
https://doi.org/10.1016/j.ejor.2010.07.019
5 Y S Chow, H Robbins, D Siegmund. Great Expectations: The Theory of Optimal Stopping. Boston: Houghton Mifflin Company, 1991
6 B Dochviri. On optimal stopping of inhomogeneous standard Markov processes. Georgian Math J, 1995, 2: 335–346
https://doi.org/10.1007/BF02255984
7 O Hernández-Lerma, J B Lasserre. Discrete-time Markov Control Processes: Basic Optimality Criteria. New York: Springer-Verlag, 1996
https://doi.org/10.1007/978-1-4612-0729-0
8 Y H Huang, X P Guo. Discounted semi-Markov decision processes with nonnegative costs. Acta Math Sci Ser A Chin Ed, 2010, 53: 503–514 (in Chinese)
9 Y H Huang, X P Guo. Finite horizon semi-Markov decision processes with application to maintenance systems. European J Oper Res, 2011, 212: 131–140
https://doi.org/10.1016/j.ejor.2011.01.027
10 A Jaśkiewicz, A S Nowak. Optimality in Feller semi-Markov control processes. Oper Res Lett, 2006, 34: 713–718
https://doi.org/10.1016/j.orl.2005.11.005
11 M Y Kitaev. Semi-Markov and jump Markov controlled models: average cost criterion. Theory Probab Appl, 1986, 30: 272–288
https://doi.org/10.1137/1130036
12 M Y Kitaev, V Rykov. Controlled Queueing Systems. Boca Raton: CRC Press, 1995
13 N Limnios, G Oprisan. Semi-Markov Processes and Reliability. Boston: Birkhäuser, 2001
https://doi.org/10.1007/978-1-4612-0161-8
14 M L Nikolaev. On optimal multiple stopping of Markov sequences. Theory Probab Appl, 1999, 43: 298–306
https://doi.org/10.1137/S0040585X9797691X
15 M L Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. New York: John Wiley & Sons, Inc, 1994
https://doi.org/10.1002/9780470316887
16 G Peskir, A Shiryaev. Optimal Stopping and Free-Boundary Problems. Boston: Birkhäuser, 2006
17 S M Ross. Average cost semi-Markov decision processes. J Appl Probab, 1970, 7: 649–656
https://doi.org/10.1017/S0021900200110617
18 J L Snell. Applications of martingale system theorems. Trans Amer Math Soc, 1952, 73: 293–312
https://doi.org/10.1090/S0002-9947-1952-0050209-9
19 L Ye. Value function and optimal rule on the optimal stopping problem for continuoustime Markov processes. Chin J Math, 2017, 1: 1–10
https://doi.org/10.1155/2017/3596037
20 M V Zhitlukhin, A N Shiryaev. On the existence of solutions of unbounded optimal stopping problems. Proc Steklov Inst Math, 2014, 287: 299–307
https://doi.org/10.1134/S0081543814080185
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed