Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2022, Vol. 17 Issue (4) : 567-570    https://doi.org/10.1007/s11464-021-0970-1
RESEARCH ARTICLE
Normal Sylow subgroups and monomial Brauer characters
Xiaoyou CHEN1, Long MIAO2,3()
1. School of Sciences, Henan University of Technology, Zhengzhou 450001, China
2. College of Science, Hohai University, Nanjing 210098, China
3. School of Mathematical Sciences, Yangzhou University, Yangzhou 225002, China
 Download: PDF(181 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Let G be a finite group, p be a prime divisor of |G|, and P be a Sylow p-subgroup of G. We prove that P is normal in a solvable group G if |G : ker φ|p' = φ(1)p' for every nonlinear irreducible monomial p-Brauer character φ of G, where ker φ is the kernel of φ and φ(1)p' is the p'-part of φ(1).

Keywords Solvable group      monomial Brauer character      Sylow subgroup     
Corresponding Author(s): Long MIAO   
Issue Date: 19 December 2022
 Cite this article:   
Xiaoyou CHEN,Long MIAO. Normal Sylow subgroups and monomial Brauer characters[J]. Front. Math. China, 2022, 17(4): 567-570.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-021-0970-1
https://academic.hep.com.cn/fmc/EN/Y2022/V17/I4/567
1 X Y Chen , M L Lewis . Itô’s theorem and monomial Brauer characters. Bull Aust Math Soc, 2017, 96: 426- 428
https://doi.org/10.1017/S0004972717000399
2 X Y Chen , M L Lewis . Squares of degrees of Brauer characters and monomial Brauer characters. Bull Aust Math Soc, 2019, 100: 58- 60
https://doi.org/10.1017/S0004972718001442
3 I M Isaacs . Character Theory of Finite Groups. New York: Academic Press, 1976
https://doi.org/10.1090/chel/359
4 O Manz , T R Wolf . Representations of Solvable Groups. London Math Soc Lecture Note Ser, Vol 185. Cambridge: Cambridge Univ Press, 1993
https://doi.org/10.1017/CBO9780511525971
5 G Navarro . Characters and Blocks of Finite Groups. London Math Soc Lecture Note Ser, Vol 250. Cambridge: Cambridge Univ Press, 1998
https://doi.org/10.1017/CBO9780511526015
6 L Pang , J Lu . Finite groups and degrees of irreducible monomial characters. J Algebra Appl, 2016, 15: 1650073 (4 pp)
https://doi.org/10.1142/S0219498816500730
7 H P Tong-Viet . Brauer characters and normal Sylow p-subgroups. J Algebra, 2018, 503: 265–276; Corrigendum to “Brauer characters and normal Sylow p-subgroups”. J Algebra, 2018, 505: 597- 598
https://doi.org/10.1016/j.jalgebra.2018.03.032
[1] Changwen LI, Jianhong HUANG, Bin HU. c?-Quasinormally embedded subgroups of finite groups[J]. Front Math Chin, 2012, 7(4): 703-716.
[2] Xiuxian FENG, Wenbin GUO. On ?h-normal subgroups of finite groups[J]. Front Math Chin, 2010, 5(4): 653-664.
[3] Jiakuan LU, Xiuyun GUO. Notes on NE-subgroups of finite groups[J]. Front Math Chin, 2010, 5(4): 679-685.
[4] Tao ZHAO, Xianhua LI. Semi cover-avoiding properties of finite groups[J]. Front Math Chin, 2010, 5(4): 793-800.
[5] Wenbin GUO, Fengyan XIE, Yi LU, . On g-s-supplemented subgroups of finite groups[J]. Front. Math. China, 2010, 5(2): 287-295.
[6] Zhencai SHEN, Wujie SHI, Qingliang ZHANG, . S-quasinormality of finite groups[J]. Front. Math. China, 2010, 5(2): 329-339.
[7] LI Yangming, PENG Kangtai. -quasinormally embedded and c-supplemented subgroup of finite group[J]. Front. Math. China, 2008, 3(4): 511-521.
[8] SHAO Changguo, SHI Wujie, JIANG Qinhui. Characterization of simple -groups[J]. Front. Math. China, 2008, 3(3): 355-370.
[9] LIU Xi, LI Baojun, YI Xiaolan. Some criteria for supersolubility in products of finite groups[J]. Front. Math. China, 2008, 3(1): 79-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed