Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2022, Vol. 17 Issue (1) : 141-148    https://doi.org/10.1007/s11464-022-1006-1
RESEARCH ARTICLE
Random weighting estimation for survival function under right censorship
Wei LIANG()
School of Mathematical Sciences, Xiamen University, Xiamen 361005, China
 Download: PDF(253 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The random weighting method is an emerging computing method in statistics. In this paper, we propose a novel estimation of the survival function for right censored data based on the random weighting method. Under some regularity conditions, we prove the strong consistency of this estimation.

Keywords Right censored data      survival function      random weighting method     
Corresponding Author(s): Wei LIANG   
Issue Date: 19 May 2022
 Cite this article:   
Wei LIANG. Random weighting estimation for survival function under right censorship[J]. Front. Math. China, 2022, 17(1): 141-148.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-022-1006-1
https://academic.hep.com.cn/fmc/EN/Y2022/V17/I1/141
1 B Efron. Bootstrap Methods: another look at the Jackknife. Ann Statist, 1979, 7 (1): 1- 26
2 S S Wilks. Mathematical Statistics. New York: John Wiley & Sons, 1962
3 A V Jr Peterson. Expressing the Kaplan-Meier estimator as a function of empirical subsurvival functions. J. Amer Statist Assoc, 1977, 72: 854- 858
4 Z G Zheng. Random weighting method. Acta Mathematicae Applicatae Sinica, 1987, 10 (2): 247- 253 (in Chinese)
5 Z G Zheng, D S Tu. Random weighted approximation in linear model. SCI CHINA SER A, 1988, 31 (6): 561- 575 (in Chinese)
6 Y H Wu, L C Zhao. A large sample study of random weighted bootstrap in linear models. Science in China Series A: Mathematics, 1999, 42 (10): 1066- 1074
https://doi.org/10.1007/BF02889508
7 Y X Fang, L C Zhao. Approximation to the distribution of LAD estimators for censored regression by random weighting method. J. Statist Plan Infer, 2006, 136 (4): 1302- 1316
https://doi.org/10.1016/j.jspi.2004.09.010
8 X Y Wu, Y N Yang, L C Zhao. Approximation by random weighting method for M-test in linear models. Science in China: Series A, Mathematics, 2007, 50 (1): 87- 99
https://doi.org/10.1007/s11425-007-2022-z
9 D B Rubin. The Bayesian bootstrap. The annals of statistics, 1981: 130- 134
10 A Y Lo. A large sample study of the Bayesian bootstrap. The annals of statistics, 1987: 360- 375
11 T L Ng, M A Newton. Newton M A. Random weighting in LASSO regression. arXiv preprint arXiv:2002.02629, 2020
12 Z Gao, C Gu, J Yang, S Gao, Y Zhong. Random Weighting-Based Nonlinear Gaussian Filtering. IEEE Access, 2020, 8: 19590- 19605
https://doi.org/10.1109/ACCESS.2020.2968363
13 D S Tu, Z G Zheng. Asymptotic Expansion of Random Weighting Method. Applied Probability and Statistics, 1987, 3 (4): 340- 347 (in Chinese)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed