Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2022, Vol. 17 Issue (3) : 437-454    https://doi.org/10.1007/s11464-022-1016-z
SURVEY ARTICLE
Computation of the cohomology rings of Kac-Moody groups, their flag manifolds and classifying spaces
Xu-an ZHAO()
School of Mathematical Sciences, Beijing Normal University, Key Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, China
 Download: PDF(232 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper we introduce the history and present situation of the computation of the cohomology rings of Kac-Moody groups, their flag manifolds and classifying spaces, and give some problems and conjectures that deserve further study.

Keywords Kac-Moody groups      flag manifolds      classifying spaces      cohomology rings      spectral sequences     
Corresponding Author(s): Xu-an ZHAO   
Issue Date: 25 May 2022
 Cite this article:   
Xu-an ZHAO. Computation of the cohomology rings of Kac-Moody groups, their flag manifolds and classifying spaces[J]. Front. Math. China, 2022, 17(3): 437-454.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-022-1016-z
https://academic.hep.com.cn/fmc/EN/Y2022/V17/I3/437
1 J F. Adams Lectures on Exceptional Lie Groups. Chicago Lectures in Mathematics. Chicago, IL: University of Chicago Press, 1996
2 J Aguadé, C Broto, N Kitchloo, L. Saumell Cohomology of classifying spaces of central quotients of rank two Kac-Moody groups. J Math Kyoto Univ, 2005, 45(3): 449–488
https://doi.org/10.1215/kjm/1250281970
3 S. Araki Cohomology modulo 2 of the compact exceptional groups E6 and E7. J Math Osaka City University, 1961, 12(1/2): 43–65
4 S Araki, Y. Shikata Cohomology mod 2 of the compact exceptional group E8. Proc Japan Acad, 1961, 37: 619–622
https://doi.org/10.3792/pja/1195523538
5 S. Araki Differential Hopf algebras and the cohomology mod 3 of the compact exceptional groups E7 and E8, Ann of Math, 1961, 73(2): 404–436
https://doi.org/10.2307/1970339
6 P F Baum, W. Browder The cohomology of quotients of classical groups. Topology, 1965, 3: 305–336
https://doi.org/10.1016/0040-9383(65)90001-7
7 I N Bernstein, I M Gel’fand, S I. Gel’fand Schubert cells and cohomology of the spaces G/P. Russian Math Surveys, 1973, 28(3): 1–26
https://doi.org/10.1070/RM1973v028n03ABEH001557
8 A. Borel Sur la cohomologie des espaces fibres principaux et des espaces homogénes de groupes de Lie compacts. Ann of Math, 1953, 57(2): 115–207 (in French)
https://doi.org/10.2307/1969728
9 A. Borel Homology and cohomology of compact connected Lie groups. Proc Nat Acad Sci, 1953, 39: 1142–1146
https://doi.org/10.1073/pnas.39.11.1142
10 A. Borel Sur l’homologie et la cohomologie des groupes de Lie compacts connexes. Amer J Math, 1954, 76: 273–342 (in French)
https://doi.org/10.2307/2372574
11 R Bott, H. Samelson The cohomology ring of G/T, Proc Nat Acad Sci, 1955, 41: 490–493
https://doi.org/10.1073/pnas.41.7.490
12 R. Bott An application of the Morse theory to the topology of Lie groups. Bull Soc Math, 1956, 84: 251–281
https://doi.org/10.24033/bsmf.1472
13 R. Bott The space of loops on a Lie group. Michigan Math J, 1958, 5: 35–61
https://doi.org/10.1307/mmj/1028998010
14 R Bott, W T. Loring Differential Forms in Algebraic Topology. Graduate Texts in Mathematics, New York: Springer-Verlag, 1982, 82
https://doi.org/10.1007/978-1-4757-3951-0
15 C Broto, N. Kitchloo Classifying spaces of Kac-Moody groups. Math Z, 2002, 240(3): 621–649
https://doi.org/10.1007/s002090100391
16 E. Cartan La topologie des groupes de Lie. L’Enseignement Math, 1936, 35: 177–200 (in French)
17 N Castellana, N. Kitchloo A homotopy construction of the adjoint representation for Lie groups. Math Proc Cambridge Philos Soc, 2002, 133(3): 399–409
https://doi.org/10.1017/S0305004102005947
18 C. Chevalley Invariants of finite groups generated by reflections. Amer J Math, 1955, 77: 778–782
https://doi.org/10.2307/2372597
19 C. Chevalley Sur les décompositions cellulaires des espaces G/B. In: Algebraic Groups and Their Generalizations: Classical Methods, Proc Symp in Pure Math, Providence, RI: AMS, 1994, 56(1), 1–26 (in French)
https://doi.org/10.1090/pspum/056.1/1278698
20 M. Demazure Désingularisation des variétés de Schubert généralisées. Collection of articles dedicated to Henri Cartan on the occasion of his 70th birthday, I Ann Sci École Norm Sup, 1974, 7(4): 53–88 (in French)
https://doi.org/10.24033/asens.1261
21 H B. Duan Multiplicative rule of Schubert classes. Invent Math, 2005, 159(2): 407–436
https://doi.org/10.1007/s00222-004-0394-z
22 H B. Duan The near-Hopf ring structure on the integral cohomology of 1-connected Lie groups. 2010, arXiv: 1008.4897
23 H B. Duan Schubert calculus and cohomology of Lie groups, Part II, Compact Lie groups. 2015, arXiv: 1502.00410
24 H B. Duan The characteristic classes and Weyl invariants of Spinor groups. 2018, arXiv: 1810.03799
25 H B Duan, X A. Zhao The classification of cohomology endomorphisms of certain flag manifolds. Pacific J Math, 2000, 192(1): 93–102
https://doi.org/10.2140/pjm.2000.192.93
26 H B Duan, X Z. Zhao Schubert calculus and cohomology of Lie groups, Part I, 1-connected Lie groups. 2007, arXiv: 0711.2541
27 H B Duan, X Z. Zhao Schubert calculus and the Hopf algebra structures of exceptional Lie groups. Forum Math, 2014, 26(1): 113–139
https://doi.org/10.1515/form.2011.154
28 H B Duan, X Z. Zhao Schubert presentation of the cohomology ring of flag manifolds G/T. J Comput Math, 2015, 18(1): 489–506
https://doi.org/10.1112/S1461157015000133
29 H. Hopf Über die topologie der gruppen-mannigfaltigkeiten und libre verallgemeinerungen. Ann of Math, 1941, 42(2): 22–52 (in German)
https://doi.org/10.2307/1968985
30 D. Husemoller Fibre Bundles, Second Edition. Graduate Texts in Mathematics, New York: Springer-Verlag, 1975, 20
31 C H Jin, X A. Zhao On the Poincaré series of Kac-Moody Lie algebras. 2012, arXiv: 1210.0648v1
32 V G. Kac Simple irreducible graded Lie algebras of finite growth. Izv Akad Nauk SSSR Ser Mat, 1968, 32: 1323–1367 (in Russian)
33 V G. Kac Infinite Dimensional Lie Algebras. Cambridge: Cambridge University Press, 1982
https://doi.org/10.1007/978-1-4757-1382-4
34 V G. Kac Constructing groups associated to infinite dimensionl Lie algebras, in Infinite Dimensional Groups with Applications. Berkeley, Calif, 1984, Math Sci Res Inst Publ, New York: Springer, 1985, 4, 167–216
https://doi.org/10.1007/978-1-4612-1104-4_7
35 V G. Kac Torsion in cohomology of compact Lie groups and Chow rings of reductive algebraic groups. Invent Math, 1985, 80(1): 69–79
https://doi.org/10.1007/BF01388548
36 V G Kac, D H. Peterson Regular functions on certain infinite-dimensional group. In: Arithmetic and Geometry, Vol II, Progr Math, Vol 36, Boston, MA: Birkhäuser, 1983, 141–166
https://doi.org/10.1007/978-1-4757-9286-7_8
37 V G Kac, D H. Peterson Defining relations of certain infinite-dimensional groups. In: The Mathematical Heritage of Élie Cartan (Lyon, 1984), Astérisque, Numéro Hors Série, 1985, 165–208
38 V G Kac, D H. Peterson Generalized invariants of groups generated by reflections. In: Geometry Today (Rome, 1984), Progr Math, Vol 60, Boston, MA: Birkhäuser, 1985, 231–249
39 N. Kitchloo Topology of Kac-Moody groups. Ph.D. Thesis, Cambridge, MA: Massachusetts Institute of Technology, 1998
40 N. Kitchloo On the topology of Kac-Moody groups. Math Z, 2014, 276(3/4): 727–756
https://doi.org/10.1007/s00209-013-1220-3
41 N. Kitchloo On some applications of unstable Adams operations to the topology of Kac-Moody groups. Proc Amer Math Soc, 2017, 145(2): 915–924
https://doi.org/10.1090/proc/13269
42 S L. Kleiman Rigorous foundations of Schubert’s enumerative calculus. In: Mathematical Developments Arising from Hilbert Problems, Proc Sympos Pure Math, Vol 28, Providence, RI: AMS, 1976, 445–482
https://doi.org/10.1090/pspum/028.2/0429938
43 S L. Kleiman Intersection theory and enumerative geometry: A decade in review. In: Algebraic Geometry (Bowdoin 1985), Proc Sympos Pure Math, Vol 46, Providence, RI: AMS, 1987, 321–370
https://doi.org/10.1090/pspum/046.2/927987
44 A Kono, M. Mimura Cohomology mod 2 of the classifying space of the compact connected Lie group of type E6. J Pure Appl Algebra 1975, 6(1): 61–81
https://doi.org/10.1016/0022-4049(75)90013-4
45 A Kono, M. Mimura Cohomology mod 3 of the classifying space of the Lie group E6, Math Scand, 1980, 46(2): 225–235
https://doi.org/10.7146/math.scand.a-11865
46 A Kono, M Mimura, N. Shimada On the cohomology mod 2 of the classifying space of the 1-connected exceptional Lie group E7. J Pure Appl Algebra 1976, 8(3): 267–283
https://doi.org/10.1016/0022-4049(76)90048-7
47 A Kono, K. Kozima Homology of the Kac-Moody Lie groups, I. J Math Kyoto Univ, 1989, 29(3): 449–453
https://doi.org/10.1215/kjm/1250520218
48 A Kono, K. Kozima Homology of the Kac-Moody Lie groups, II. J Math Kyoto Univ, 1991, 31(1): 165–170
https://doi.org/10.1215/kjm/1250519898
49 A Kono, K. Kozima Homology of the Kac-Moody Lie groups, III. J Math Kyoto Univ, 1991, 31(4): 1115–1120
https://doi.org/10.1215/kjm/1250519679
50 B. Kostant Lie algebra cohomology and generalized Schubert cells. Ann of Math, 1963, 77(2): 72–144
https://doi.org/10.2307/1970202
51 B Kostant, S. Kumar T-equivariant K-theory of generalized flag varieties. Proc Nat Acad Sci, 1987, 84(13): 4351–4354
https://doi.org/10.1073/pnas.84.13.4351
52 B Kostant, S. Kumar The nil-Hecke ring and cohomology of G/P for a Kac-Moody group G. Adv Math, 1986, 62(3): 187–237
https://doi.org/10.1016/0001-8708(86)90101-5
53 S. Kumar Rational homotopy theory of flag varieties associated to Kac-Moody groups. In: Infinite-dimensional Groups with Applications, Berkeley, Calif, 1984, Math Sci Res Inst Publ, New York: Springer, 1985, 4, 233–273
https://doi.org/10.1007/978-1-4612-1104-4_9
54 S. Kumar Kac-Moody groups, their flag varieties and representation theory. Progress in Mathematics, Boston, MA: Birkhäuser, 2002, 204
https://doi.org/10.1007/978-1-4612-0105-2
55 V Lakshmibai, N. Gonciulea Flag varieties. Hermann-Actualités Mathématiques, Hermann, 2001
56 J. Leray Sur l’homologie des groupes de Lie, des espaces homogènes et des espaces fibrés principaux. In Colloque de topologie (espacefibrés), Bruxelles, 1950, Liège: Georges Thone, 1951, 101–115 (in French)
57 J W Milnor, J C. Moore On the structure of Hopf algebras. Ann of Math, 1965, 81(2): 211–264
https://doi.org/10.2307/1970615
58 M Mimura, Y. Sambe On the cohomology mod p of the classifying spaces of the exceptional Lie groups I, II, III. J Math Kyoto Univ, 1979, 19(3): 553–581; 1980, 20(2): 327–379
https://doi.org/10.1215/kjm/1250522283
59 M Mimura, H. Toda Topology of Lie Groups, I, II. Translated from the 1978 Japanese edition by the authors, Translations of Mathematical Monographs, Providence, RI: AMS, 1991, Vol 91
60 M Mimura, Y Sambe, M. Tezuka Cohomology mod 3 of the classifying space of the exceptional Lie group E6, I: structure of Cotor, 2011, arXiv: 1112.5811; II: The Weyl group invariants, 2012, arXiv: 1201.3414
61 R V. Moody A new class of Lie algebras. J Algebra, 1968, 10: 211–230
https://doi.org/10.1016/0021-8693(68)90096-3
62 M. Nakagawa The integral cohomology ring of E7/T. J Math Kyoto Univ, 2001, 41(2): 303–321
https://doi.org/10.1215/kjm/1250517635
63 M. Nakagawa The integral cohomology ring of E8/T. Proc Japan Acad Ser A Math Sci, 2010, 86(3): 64–68
https://doi.org/10.3792/pjaa.86.64
64 H V. Pittie The integral homology and cohomology rings of SO(n) and Spin(n). J Pure Appl Algebra 1991, 73(2): 105–153
https://doi.org/10.1016/0022-4049(91)90108-E
65 L S. Pontryagin Sur les nombres de Betti des groupes de Lie. C R Acad Sci Paris, 1935, 200: 1277–1280 (in French)
66 L S. Pontrjagin Homologies in compact Lie groups. Rec Math N S, 1939, 48(6): 389–422
67 M Rothenberg, N E. Steenrod The cohomology of classifying spaces of H-spaces. Bull Amer Math Soc, 1965, 71: 872–875
https://doi.org/10.1090/S0002-9904-1965-11420-3
68 Y Y Ruan, X A. Zhao Cohomology of classifying spaces of rank 3 Kac-Moody groups, in preparation
69 H. Schubert Kalkül der abzählenden Geometrie. Berlin: Springer-Verlag, 1979 (in German)
https://doi.org/10.1007/978-3-642-67228-6
70 H. Schubert Anzahl-Bestimmungen für Lineare Räme, Beliebiger dimension. Acta Math, 1886, 8(1): 97–118 (in German)
https://doi.org/10.1007/BF02417085
71 H. Toda Cohomology mod 3 of the classifying space BF4 of the exceptional group F4. J Math Kyoto Univ, 1973, 13: 97–115
https://doi.org/10.1215/kjm/1250523438
72 H. Toda Cohomology of the classifying space of exceptional Lie groups. In: Manifolds–Tokyo, 1973, Tokyo: Univ Tokyo Press, 1975, 265–271
73 H Toda, T. Watanabe The integral cohomology ring of F4/T and E6/T, J Math Kyoto Univ, 1974, 14: 257–286
https://doi.org/10.1215/kjm/1250523239
74 R. Wang Polynomial invariants of affine Weyl groups. Master Thesis, Beijing: Beijing Normal University, 2019
75 A. Weil Foundations of Algebraic Geometry. Providence, RI: AMS, 1962
https://doi.org/10.1007/978-1-4757-1705-1_42
76 G W. Whitehead Elements of Homotopy Theory. New York: Springer-Verlag, 1978
https://doi.org/10.1007/978-1-4612-6318-0
77 C T. Yen Sur les polynomes de Poincaré des groupes de Lie exceptionnels. C R Acad Sci Paris, 1949, 228: 628–630 (in French)
78 T. Yang The cohomology of classifying spaces of rank 2 Kac-Moody groups. Master Thesis, Beijing: Beijing Normal University, 2017
79 X A Zhao, C H. Jin Polynomial invariants of Weyl groups for Kac-Moody groups. Pacific J Math, 2014, 269(2): 491–509
https://doi.org/10.2140/pjm.2014.269.491
80 X A Zhao, C H Jin, J M. Zhang Poincaré series and rational homotopy types of Kac- Moody groups and their flag manifolds. Ann Math Ser A, 2017, 38(4): 461–468 (in Chinese)
81 X A Zhao, H Z. Gao The rational cohomology Hopf algebra of a generic Kac-Moody group. 2018, arXiv: 1804.05491
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed