Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2022, Vol. 17 Issue (3) : 455-471    https://doi.org/10.1007/s11464-022-1017-y
RESEARCH ARTICLE
Boundary behavior of harmonic functions on metric measure spaces with non-negative Ricci curvature
Wanwan YANG, Bo LI()
Center for Applied Mathematics, Tianjin University, Tianjin 300072, China
 Download: PDF(922 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Let (X, d, μ) be a metric measure space with non-negative Ricci curvature. This paper is concerned with the boundary behavior of harmonic function on the (open) upper half-space X×+. We derive that a function f of bounded mean oscillation (BMO) is the trace of harmonic function u(x,t ) on X×+,u(x,0 )=f( x), whenever u satisfies the following Carleson measure condition

supxB,rB 0rBfB(x B, rB)|t u(x ,t)|2d μ (x)dttC<

where =( x ,t) denotes the total gradient and B(xB,r B) denotes the (open) ball centered at xB with radius rB. Conversely, the above condition characterizes all the harmonic functions whose traces are in BMO space.

Keywords Harmonic function      metric measure space      BMO      Carleson measure     
Corresponding Author(s): Bo LI   
Issue Date: 25 May 2022
 Cite this article:   
Wanwan YANG,Bo LI. Boundary behavior of harmonic functions on metric measure spaces with non-negative Ricci curvature[J]. Front. Math. China, 2022, 17(3): 455-471.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-022-1017-y
https://academic.hep.com.cn/fmc/EN/Y2022/V17/I3/455
1 L Ambrosio, N Gigli, G. Savaré Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces. Rev. Mat. Iberoam., 2013, 29(3): 969–996
https://doi.org/10.4171/RMI/746
2 L Ambrosio, N Gigli, G. Savaré Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds. Ann. Probab., 2015, 43(1): 339–404
https://doi.org/10.1214/14-AOP907
3 A Björn, J. Björn Nonlinear Potential Theory on Metric Spaces. EMS Tracts in Mathematics, Vol. 17. Zürich: European Mathematical Society, 2011
4 J C. Chen A representation theorem of harmonic functions and its application to BMO on manifolds. Appl Math. J. Chinese Univ. Ser. B, 2001, 16(3): 279–284
https://doi.org/10.1007/s11766-001-0066-3
5 X Duong, L X Yan, C. Zhang On characterization of Poisson integrals of Schrödinger operators with BMO traces. J. Funct. Anal., 2014, 266(4): 2053–2085
https://doi.org/10.1016/j.jfa.2013.09.008
6 M Erbar, K Kuwada, K T. Sturm On the equivalence of the entropic curvaturedimension condition and Bochner’s inequality on metric measure spaces. Invent. Math., 2015, 201(3): 993–1071
https://doi.org/10.1007/s00222-014-0563-7
7 E Fabes, R Johnson, U. Neri Spaces of harmonic functions representable by Poisson integrals of functions in BMO and Lp,λ. Indiana Univ. Math. J., 1976, 25(2): 159–170
https://doi.org/10.1512/iumj.1976.25.25012
8 C Fefferman, E. Stein Hp spaces of several variables. Acta Math., 1972, 129: 137–193
https://doi.org/10.1007/BF02392215
9 N. Gigli On the differential structure of metric measure spaces and applications. Mem. Amer. Math. Soc., 2015, 236(1113): vi+91
https://doi.org/10.1090/memo/1113
10 J Heinonen, P Koskela, N Shanmugalingam, J. Tyson Sobolev Spaces on Metric Measure Spaces, An Approach Based on Upper Gradients, New Mathematical Monographs, Vol. 27. Cambridge: Cambridge University Press, 2015
https://doi.org/10.1017/CBO9781316135914
11 S Hofmann, G Z Lu, D Mitrea, M Mitrea, L X. Yan Hardy spaces associated to nonnegative self-adjoint operators satisfying Davies-Gaffney estimates. Mem. Amer. Math. Soc., 2011, 214(1007): 78
https://doi.org/10.1090/S0065-9266-2011-00624-6
12 R J. Jiang Cheeger-harmonic functions in metric measure spaces revisited. J. Funct. Anal., 2014, 266(3): 1373–1394
https://doi.org/10.1016/j.jfa.2013.11.022
13 R J. Jiang The Li-Yau inequality and heat kernels on metric measure spaces. J. Math. Pures Appl. (9), 2015, 104(1): 29–57
https://doi.org/10.1016/j.matpur.2014.12.002
14 R J Jiang, H Q Li, H C. Zhang Heat kernel bounds on metric measure spaces and some applications. Potential Anal., 2016, 44(3): 601–627
https://doi.org/10.1007/s11118-015-9521-2
15 J Lott, C. Villani Ricci curvature for metric-measure spaces via optimal transport. Ann. of Math. (2), 2009, 169(3): 903–991
https://doi.org/10.4007/annals.2009.169.903
16 K. Sturm On the geometry of metric measure spaces I. Acta Math., 2006, 196(1): 65–131
https://doi.org/10.1007/s11511-006-0002-8
17 K. Sturm On the geometry of metric measure spaces II. Acta Math., 2006, 196(1): 133–177
https://doi.org/10.1007/s11511-006-0003-7
18 H C Zhang, X P. Zhu On a new definition of Ricci curvature on Alexandrov spaces. Acta Math. Sci. Ser. B (Engl. Ed.), 2010, 30(6): 1949–1974
https://doi.org/10.1016/S0252-9602(10)60185-3
19 H C Zhang, X P. Zhu Yau’s gradient estimates on Alexandrov spaces. J. Differential Geom., 2012, 91(3): 445–522
https://doi.org/10.4310/jdg/1349292672
[1] Rui BU, Zunwei FU, Yandan ZHANG. Weighted estimates for bilinear square functions with non-smooth kernels and commutators[J]. Front. Math. China, 2020, 15(1): 1-20.
[2] Meng MENG, Shijin ZHANG. De Lellis-Topping type inequalities on smooth metric measure spaces[J]. Front. Math. China, 2018, 13(1): 147-160.
[3] Nguyen Minh CHUONG, Nguyen Thi HONG, Ha Duy HUNG. Bounds of weighted multilinear Hardy-Cesàro operators in p-adic functional spaces[J]. Front. Math. China, 2018, 13(1): 1-24.
[4] Wei WANG, Jingshi XU. Multilinear Calderón-Zygmund operators and their commutators with BMO functions in variable exponent Morrey spaces[J]. Front. Math. China, 2017, 12(5): 1235-1246.
[5] Zhehui WANG, Dongyong YANG. An equivalent characterization of BMO with Gauss measure[J]. Front. Math. China, 2017, 12(3): 749-768.
[6] Bobo HUA,Yong LIN. Curvature notions on graphs[J]. Front. Math. China, 2016, 11(5): 1275-1290.
[7] Chol RI,Zhenqiu ZHANG. Boundedness of θ-type Calderón-Zygmund operators on non-homogeneous metric measure space[J]. Front. Math. China, 2016, 11(1): 141-153.
[8] Ruifang HU,Bolin MA,Xianmin XU. Generalized area operators on Lp(?n)[J]. Front. Math. China, 2014, 9(5): 1051-1072.
[9] Lei QIAO, Guantie DENG. Growth of certain harmonic functions in an n-dimensional cone[J]. Front Math Chin, 2013, 8(4): 891-905.
[10] Yan CHEN, Zhuangji WANG, Kewei ZHANG. Approximations for modulus of gradients and their applications to neighborhood filters[J]. Front Math Chin, 2013, 8(4): 761-782.
[11] Fayou ZHAO, Shanzhen LU. A characterization of λ-central BMO space[J]. Front Math Chin, 2013, 8(1): 229-238.
[12] Shanzhen LU. Some results and problems on commutators[J]. Front Math Chin, 2011, 6(5): 821-833.
[13] Shaoguang SHI, Zunwei FU, Shanzhen LU. Weighted estimates for commutators of one-sided oscillatory integral operators[J]. Front Math Chin, 2011, 6(3): 507-516.
[14] Zunwei FU, Shanzhen LU, . Weighted Hardy operators and commutators on Morrey spaces[J]. Front. Math. China, 2010, 5(3): 531-539.
[15] LU Shanzhen, XIA Xia. A note on commutators of Bochner-Riesz operator[J]. Front. Math. China, 2007, 2(3): 439-446.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed