|
|
|
Boundary behavior of harmonic functions on metric measure spaces with non-negative Ricci curvature |
Wanwan YANG, Bo LI( ) |
| Center for Applied Mathematics, Tianjin University, Tianjin 300072, China |
|
|
|
|
Abstract Let (X, d, μ) be a metric measure space with non-negative Ricci curvature. This paper is concerned with the boundary behavior of harmonic function on the (open) upper half-space . We derive that a function f of bounded mean oscillation (BMO) is the trace of harmonic function on , whenever u satisfies the following Carleson measure condition where denotes the total gradient and denotes the (open) ball centered at with radius . Conversely, the above condition characterizes all the harmonic functions whose traces are in BMO space.
|
| Keywords
Harmonic function
metric measure space
BMO
Carleson measure
|
|
Corresponding Author(s):
Bo LI
|
|
Issue Date: 25 May 2022
|
|
| 1 |
L Ambrosio, N Gigli, G. Savaré Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces. Rev. Mat. Iberoam., 2013, 29(3): 969–996
https://doi.org/10.4171/RMI/746
|
| 2 |
L Ambrosio, N Gigli, G. Savaré Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds. Ann. Probab., 2015, 43(1): 339–404
https://doi.org/10.1214/14-AOP907
|
| 3 |
A Björn, J. Björn Nonlinear Potential Theory on Metric Spaces. EMS Tracts in Mathematics, Vol. 17. Zürich: European Mathematical Society, 2011
|
| 4 |
J C. Chen A representation theorem of harmonic functions and its application to BMO on manifolds. Appl Math. J. Chinese Univ. Ser. B, 2001, 16(3): 279–284
https://doi.org/10.1007/s11766-001-0066-3
|
| 5 |
X Duong, L X Yan, C. Zhang On characterization of Poisson integrals of Schrödinger operators with BMO traces. J. Funct. Anal., 2014, 266(4): 2053–2085
https://doi.org/10.1016/j.jfa.2013.09.008
|
| 6 |
M Erbar, K Kuwada, K T. Sturm On the equivalence of the entropic curvaturedimension condition and Bochner’s inequality on metric measure spaces. Invent. Math., 2015, 201(3): 993–1071
https://doi.org/10.1007/s00222-014-0563-7
|
| 7 |
E Fabes, R Johnson, U. Neri Spaces of harmonic functions representable by Poisson integrals of functions in BMO and Lp,λ. Indiana Univ. Math. J., 1976, 25(2): 159–170
https://doi.org/10.1512/iumj.1976.25.25012
|
| 8 |
C Fefferman, E. Stein Hp spaces of several variables. Acta Math., 1972, 129: 137–193
https://doi.org/10.1007/BF02392215
|
| 9 |
N. Gigli On the differential structure of metric measure spaces and applications. Mem. Amer. Math. Soc., 2015, 236(1113): vi+91
https://doi.org/10.1090/memo/1113
|
| 10 |
J Heinonen, P Koskela, N Shanmugalingam, J. Tyson Sobolev Spaces on Metric Measure Spaces, An Approach Based on Upper Gradients, New Mathematical Monographs, Vol. 27. Cambridge: Cambridge University Press, 2015
https://doi.org/10.1017/CBO9781316135914
|
| 11 |
S Hofmann, G Z Lu, D Mitrea, M Mitrea, L X. Yan Hardy spaces associated to nonnegative self-adjoint operators satisfying Davies-Gaffney estimates. Mem. Amer. Math. Soc., 2011, 214(1007): 78
https://doi.org/10.1090/S0065-9266-2011-00624-6
|
| 12 |
R J. Jiang Cheeger-harmonic functions in metric measure spaces revisited. J. Funct. Anal., 2014, 266(3): 1373–1394
https://doi.org/10.1016/j.jfa.2013.11.022
|
| 13 |
R J. Jiang The Li-Yau inequality and heat kernels on metric measure spaces. J. Math. Pures Appl. (9), 2015, 104(1): 29–57
https://doi.org/10.1016/j.matpur.2014.12.002
|
| 14 |
R J Jiang, H Q Li, H C. Zhang Heat kernel bounds on metric measure spaces and some applications. Potential Anal., 2016, 44(3): 601–627
https://doi.org/10.1007/s11118-015-9521-2
|
| 15 |
J Lott, C. Villani Ricci curvature for metric-measure spaces via optimal transport. Ann. of Math. (2), 2009, 169(3): 903–991
https://doi.org/10.4007/annals.2009.169.903
|
| 16 |
K. Sturm On the geometry of metric measure spaces I. Acta Math., 2006, 196(1): 65–131
https://doi.org/10.1007/s11511-006-0002-8
|
| 17 |
K. Sturm On the geometry of metric measure spaces II. Acta Math., 2006, 196(1): 133–177
https://doi.org/10.1007/s11511-006-0003-7
|
| 18 |
H C Zhang, X P. Zhu On a new definition of Ricci curvature on Alexandrov spaces. Acta Math. Sci. Ser. B (Engl. Ed.), 2010, 30(6): 1949–1974
https://doi.org/10.1016/S0252-9602(10)60185-3
|
| 19 |
H C Zhang, X P. Zhu Yau’s gradient estimates on Alexandrov spaces. J. Differential Geom., 2012, 91(3): 445–522
https://doi.org/10.4310/jdg/1349292672
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|