Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2023, Vol. 18 Issue (2) : 105-124    https://doi.org/10.3868/s140-DDD-023-0010-x
SURVEY ARTICLE
Iterative methods for nonlinear equations and their semilocal convergence
Liang CHEN1,2(), Chuanqing GU2, Lin ZHENG2,3
1. School of Mathematics Sciences, Huaibei Normal University, Huaibei 235000, China
2. Department of Mathematics, Shanghai University, Shanghai 200444, China
3. Institute of Statistics and Applied Mathematics, Anhui University of Finance & Economics, Bengbu 233030, China
 Download: PDF(370 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We are concerned with the numerical methods for nonlinear equation and their semilocal convergence in this paper. The construction techniques of iterative methods are induced by using linear approximation, integral interpolation, Adomian series decomposition, Taylor expansion, multi-step iteration, etc. The convergent conditions and proof methods, including majorizing sequences and recurrence relations, in semilocal convergence of iterative methods for nonlinear equations are discussed in the theoretical analysis. The majorizing functions, which are used in majorizing sequences, are also discussed in this paper.

Keywords Nonlinear equation      numerical method      semilocal convergence      Newton method      Banach space     
Corresponding Author(s): Liang CHEN   
About author:

Peng Lei and Charity Ngina Mwangi contributed equally to this work.

Online First Date: 19 October 2023    Issue Date: 13 November 2023
 Cite this article:   
Liang CHEN,Chuanqing GU,Lin ZHENG. Iterative methods for nonlinear equations and their semilocal convergence[J]. Front. Math. China, 2023, 18(2): 105-124.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.3868/s140-DDD-023-0010-x
https://academic.hep.com.cn/fmc/EN/Y2023/V18/I2/105
1 J Appell, E De Pascale, J V Lysenko, P P Zabrejko. New results on Newton-Kantorovich approximations with applications to nonlinear integral equations. Numer Funct Anal Optim 1997; 18(1/2): 1–17
2 I K Argyros. On the approximate solutions of non-linear functional equations under mild differentiability conditions. Acta Math Hungar 1991; 58(1/2): 3–7
3 I K Argyros. On Newton’s method under mild differentiability conditions and applications. Appl Math Comput 1999; 102(2/3): 177–183
4 I K Argyros. A Newton-Kantorovich theorem for equations involving m-Fréchet differentiable operators and applications in radiative transfer. J Comput Appl Math 2001; 131(1/2): 149–159
5 I K Argyros. On the semilocal convergence of a fast two-step Newton method. Revista Colombiana de Matematicás 2008; 42(1): 15–24
6 I K Argyros. Convergence and Applications of Newton-type Iterations. New York: Springer-Verlag, 2008
7 I K Argyros, D Chen. On the midpoint method for solving nonlinear operator equations and applications to the solution of integral equations. Revue d’Analyse Numérique et de Théorie de l’Approximation 1994; 23(2): 139–152
8 I K Argyros, A Ezquerro, J M J, M A Gutiérrez, S Hernández. On the semilocal convergence of efficient Chebyshev-Secant-type methods. J Comput Appl Math 2011; 235(10): 3195–3206
9 I K Argyros, S Hilout. On the Gauss-Newton method. J Appl Math Comput 2011; 35(1/2): 537–550
10 I K Argyros, S Hilout. Improved local convergence of Newton’s method under weak majorant condition. J Comput Appl Math 2012; 236(7): 1892–1902
11 I K Argyros, L U Uko. An improved convergence analysis of a one-step intermediate Newton iterative scheme for nonlinear equations. J Appl Math Comput 2012; 38(1/2): 243–256
12 D K R Babajee, M Z Dauhoo. An analysis of the properties of the variants of Newton’s method with third order convergence. Appl Math Comput 2006; 183(1): 659–684
13 S Banach. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund Math 1922; 3(1): 133–181
14 A G Bao. The theoretical analysis of some high-order iterative methods for nonlinear equations. Master thesis. Hangzhou: Zhejiang Normal University, 2007 (in Chinese)
15 W H Bi, H M Ren, Q B Wu. A new semilocal convergence theorem of Müller’s method. Appl Math Comput 2008; 199(1): 375–384
16 J Biazar, M Ilie, A Khoshkenar. An improvement to an alternate algorithm for computing Adomian polynomials in special cases. Appl Math Comput 2006; 173(1): 582–592
17 V Candela, A Marquína. Recurrence relations for rational cubic methods I: The Halley method. Computing 1990; 44(2): 169–184
18 V Candela, A Marquína. Recurrence relations for rational cubic methods II: The Chebyshev method. Computing 1990; 45(4): 355–367
19 A L Cauchy. Sur la détermination des racines d’une équation algébrique ou transcendente. In: Leçons sur le Calcul Différentiel, Paris: Bure Fréres, 1829. Reprinted in: Euvres Complétes (II), Vol 4. Paris: Gauthier-Villars, 1899, 573–609 (in French)
20 D Chen, I K Argyros. The midpoint method for solving nonlinear operator equations in Banach space. Appl Math Lett 1992; 5(4): 7–9
21 D Chen, I K Argyros, Q S Qian. A note on the Halley method in Banach spaces. Appl Math Comput 1993; 58(2/3): 215–224
22 J H Chen, W G Li. Convergence behaviour of inexact Newton methods under weak Lipschitz condition. J Comput Appl Math 2006; 191(1): 143–164
23 L Chen, C Q Gu, Y F Ma. Semilocal convergence for a fifth-order Newton’s method using recurrence relations in Banach spaces. J Appl Math 2011; 2011: 786306
24 L Chen, C Q Gu, Y F Ma. Recurrence relations for the Harmonic mean Newton’s method in Banach spaces. J Comput Anal Appl 2012; 14(6): 1154–1164
25 L Chen, Y F Ma. A new modified King-Werner method for solving nonlinear equations. Comput Math Appl 2011; 62(10): 3700–3705
26 L Chen, Y F Ma. A fourth-order iterative method for solving nonlinear equations. J Huaibei Normal Univ (Natural Science) 2012; 33(1): 5–10
27 W H Chen, Z Y Lu. An algorithm for Adomian decomposition method. Appl Math Comput 2004; 159(1): 221–235
28 C B Chun. Iterative methods improving Newton’s method by the decomposition method. Comput Math Appl 2005; 50(10/11/12): 1559–1568
29 J E DennisR B Schnabel. Numerical Methods for Unconstrained Optimisation and Nonlinear Equations. Englewood Cliffs: Prentice Hall, 1983
30 P Deuflhard, G Heindl. Affine invariant convergence theorems for Newton’s method and extensions to related methods. SIAM J Numer Anal 1979; 16(1): 1–10
31 J A Ezquerro, D González, M A Hernández. Majorizing sequences for Newton’s method from initial value problems. J Comput Appl Math 2012; 236(9): 2246–2258
32 J A Ezquerro, J M Gutiérrez, M A Hernández, M A Salanova. The application of an inverse-free Jarratt-type approximation to nonlinear integral equations of Hammerstein-type. Comput Math Appl 1998; 36(4): 9–20
33 J A Ezquerro, M A Hernández. Relaxing convergence conditions for an inverse-free Jarratt-type approximation. J Comput Appl Math 1997; 83(1): 131–135
34 J A Ezquerro, M A Hernández. Avoiding the computation of the second Fréchet-derivative in the convex acceleration of Newton’s method. J Comput Appl Math 1998; 96(1): 1–12
35 J A Ezquerro, M A Hernández. New iterations of R-order four with reduced computational cost. BIT Numer Math 2009; 49(2): 325–342
36 G C Feng. Iterative Methods for Systems of Nonlinear Equations. Shanghai: Shanghai Scientific & Technical Publishers, 1989 (in Chinese)
37 I Fenyö, A Rényi. Über die lösung der im Banachschen Raume definierten nichtlinearen gleichungen. Acta Math Acad Sci Hungar 1954; 5(1/2): 85–93
38 M Frontini, E Sormani. Some variant of Newton’s method with third-order convergence. Appl Math Comput 2003; 140(2/3): 419–426
39 M Frontini, E Sormani. Modified Newton’s method with third- order convergence and multiple roots. J Comput Appl Math 2003; 156(2): 345–354
40 J Gerlach. Accelerated convergence in Newton’s method. SIAM Rev 1994; 36(2): 272–276
41 Y H Geum, Y I Kim. A penta-parametric family of fifteenth-order multipoint methods for nonlinear equations. Appl Math Comput 2010; 217(6): 2311–2319
42 M Grau, M Noguera. A variant of Cauchy’s method with accelerated fifth-order convergence. Appl Math Lett 2004; 17(5): 509–517
43 J M Gutiérrez. A new semilocal convergence theorem for Newton’s method. J Comput Appl Math 1997; 79(1): 131–145
44 J M Gutiérrez, M A Hernández. Recurrence relations for the super-Halley method. Comput Math Appl 1998; 36(7): 1–8
45 Gutiérrez. M. and Hernández, M.A., An acceleration of Newton’s method: super-Halley method. Appl Math Comput 2001; 117(2/3): 223–239
46 E Halley. Methodus Nova Accurata & facilis inveniendi Radices Æqùationium quarumcumque generaliter, sine prævia Reductione. Phil Trans Royal Soc London 1694; 18: 136–148
47 D F Han. The convergence on a family of iterations with cubic order. J Comput Math 2001; 19(5): 467–474
48 V I HasanovI G IvanovG Nedjibov. A new modification of Newton’s method. In: Applications of Mathematics in Engineering and Economics, Proceedings of the XXVII Summer School. Sofia: Heron Press, 2002, 278–286
49 M A Hernández. Chebyshev’s approximation algorithms and applications. Comput Math Appl 2001; 41(3/4): 433–445
50 M A Hernández, M A Salanova. A family of Chebyshev type methods in Banach spaces. Int J Comput Math 1996; 61(1/2): 145–154
51 H H H Homeier. A modified Newton method for root finding with cubic convergence. J Comput Appl Math 2003; 157(1): 227–230
52 H H H Homeier. A modified Newton method with cubic convergence: the multivariate case. J Comput Appl Math 2004; 169(1): 161–169
53 H H H Homeier. On Newton-type methods with cubic convergence. J Comput Appl Math 2005; 176(2): 425–432
54 H H H Homeier. On Newton-type methods for multiple roots with cubic convergence. J Comput Appl Math 2009; 231(1): 249–254
55 M Hosseini. Adomian decomposition method with Chebyshev polynomials. Appl Math Comput 2006; 175(2): 1685–1693
56 X D HuangZ G ZengY N Ma. The Theory and Methods for Nonlinear Numerical Analysis. Wuhan: Wuhan University Press, 2004 (in Chinese)
57 Z D Huang. A note on the Kantorovich theorem for Newton iteration. J Comput Appl Math 1993; 47(2): 211–217
58 L Kantorovic. Functional analysis and applied mathematics. Uspehi Mat Nauk (N S), 1948, 3: 89‒185 (in Russian). Translated by Benster C D. National Bureau of Standards, Report No 1509, Washington, 1952
59 S K Khattri, I K Argyros. Sixth order derivative free family of iterative methods. Appl Math Comput 2011; 217(12): 5500–5507
60 Y-I Kim, C B Chun. New twelfth-order modifications of Jarratt’s method for solving nonlinear equations. Studies Nonl Sci 2010; 1(1): 14–18
61 J S Kou. Some variants of Cauchy’s method with accelerated fourth-order convergence. J Comput Appl Math 2008; 213(1): 71–78
62 J S Kou, Y T Li. Modified Chebyshev’s method free from second derivative for non-linear equations. Appl Math Comput 2007; 187(2): 1027–1032
63 J S Kou, Y T Li, X H Wang. A variant of super-Halley method with accelerated fourth-order convergence. Appl Math Comput 2007; 186(1): 535–539
64 J S Kou, X H Wang, Y T Li. Some eighth-order root-finding three-step methods. Commun Nonl Sci Numer Simulat 2010; 15(3): 536–544
65 O Layeni. Remark on modifications of Adomian decomposition method. Appl Math Comput 2008; 197(1): 167–171
66 Q Y LiZ MoL Q Qi. Numerical Methods for Systems of Nonlinear Equations. Beijing: Science Press, 1987 (in Chinese)
67 X W Li, C L Mu, J W Ma, C Wang. Sixteenth-order method for nonlinear equations. Appl Math Comput 2010; 215(10): 3754–3758
68 J Liu. The Theoretical Analysis of High-Order Iterative Methods for Non-Linear Equations. Master thesis, Hangzhou: Zhejiang University, 2004
69 X G Luo. A note on the new iteration method for solving algebraic equations. Appl Math Comput 2005; 171(2): 1177–1183
70 A Melman. Geometry and convergence of Euler’s and Halley’s methods. SIAM Rev 1997; 39(4): 728–735
71 H Miao. The theoretical analysis of some iterative methods for nonlinear equations. Master thesis, Hangzhou: Zhejiang University, 2006
72 M A Noor, W A Khan, K I Noor, E Al-said. Higher-order iterative methods free from second derivative for solving nonlinear equations. Internat J Phys Sci 2011; 6(8): 1887–1893
73 K I Noor, M A Noor. Predictor-corrector Halley method for non-linear equations. Appl Math Comput 2007; 188(2): 1587–1591
74 J M OrtegaW C Rheinboldt. Iterative Solution of NonlinearEquations in Several Variables. Philadelphia: SIAM, 1970
75 A Ostrowski. Solution of Equations and Systems of Equations. New York: Academic Press, 1973
76 A Y Özban. Some new variants of Newton’s method. Appl Math Lett 2004; 17(6): 677–682
77 H M Ren, I K Argyros. A new semilocal convergence theorem for a fast iterative method with nondifferentiable operators. J Appl Math Comput 2010; 34(1/2): 39–46
78 H M Ren, Q B Wu, W H Bi. On convergence of a new secant-like method for solving nonlinear equations. Appl Math Comput 2010; 217(2): 583–589
79 J Rokne. Newton’s method under mild differentiability conditions with error analysis. Numer Math 1971; 18(5): 401–412
80 P Sargolzaei, F Soleymani. Accurate fourteenth-order methods for solving nonlinear equations. Numer Algor 2011; 58(4): 513–527
81 T R Scavo, J B Thoo. On the geometry of Halley’s method. Amer Math Monthly 1995; 102(5): 417–426
82 J R Sharma, R K Guha, P Gupta. Some efficient derivative free methods with memory for solving nonlinear equations. Appl Math Comput 2012; 219(2): 699–707
83 S Smale. Newton’s method estimates from data at one point. In: The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics. New York: Springer-Verlag, 1986, 185–196
84 S Smale. Algorithms for solving equations. In: Proceedings of the International Congress of Mathematicians. Providence: AMS, 1987, 172–195
85 F Soleymani. Letter to the editor regarding the article by Khattri: derivative free algorithm for solving nonlinear equations. Computing 2013; 95(2): 159–162
86 M Tatari, M Dehghan. On the convergence of He’s variational iteration method. J Comput Appl Math 2007; 207(1): 121–128
87 R Thukral. Introduction to a Newton-type method for solving nonlinear equations. Appl Math Comput 2008; 195(2): 663–668
88 J F Traub. Iterative Methods for the Solution of Equations. Englewood Cliffs: Prentice-Hall, 1964
89 D R Wang. Numerical Methods for Nonlinear Equations and Optimization. Beijing: People’s Education Press, 1979
90 X H Wang. Convergence of a family of Halley’s method under weak condition. Chinese Sci Bull 1997; 42(2): 119–121
91 X H Wang. Convergence of the iteration of Halley’s family and Smale operator class in Banach space. Sci China Ser A 1998; 41(7): 700–709
92 X H Wang. Convergence of Newton’s method and inverse function theorem in Banach space. Math Comp 1999; 68(225): 169–186
93 X H Wang. Convergence of Newton’s method and uniqueness of thesolution of equations in Banach space. IMA J Numer Anal 2000; 20(1): 123–134
94 X H Wang, J Dzunić, T Zhang. On an efficient family of derivative free three-point methods for solving nonlinear equations. Appl Math Comput 2012; 219(4): 1749–1760
95 X H Wang, D F Han. Criterion α and Newton’s method in the weak conditions. Math Numer Sin 1997; 19(1): 103–112
96 X H Wang, J S Kou. Semilocal convergence and R-order for modified Chebyshev-Halley methods. Numer Algor 2013; 64(1): 105–126
97 X H Wang, J S Kou, Y T Li. Modified Jarratt method with sixth-order convergence. Appl Math Lett 2009; 22(12): 1798–1802
98 X H Wang, C Li. Local and global behaviors for algorithms of solving equations. Chinese Sci Bull 2001; 46(6): 444–451
99 X H Wang, C Li. On the united theory of the family of Euler-Halley type methods with cubical convergence in Banach spaces. J Comput Math 2003; 21(2): 195–200
100 X H Wang, C Li. Convergence of Newton’s method and uniqueness of the solution of equations in Banach spaces II. Acta Math Sin Engl Ser 2003; 19(2): 405–412
101 S Weerakoon, T G I Fernando. A variant of Newton’s method with accelerated third-order convergence. Appl Math Lett 2000; 13(8): 87–93
102 M Wu. A convergence theorem for the Newton-like methods under some kind of weak Lipschitz conditions. J Math Anal Appl 2008; 339(2): 1425–1431
103 M Wu. Some Theories About Iterative Methods for Solving Nonlinear Equations. Ph D thesis. Hangzhou: Zhejiang University, 2008
104 P Wu. Iterative Methods with Higher-Order Convergence for Solving Nonlinear Equations and Analysis Convergence. Ph D thesis. Hangzhou: Zhejiang University, 2008
105 T J Ypma. Affine invariant convergence results for Newton’s method. BIT Numer Math 1982; 22(1): 108–118
106 H Zhang, D S Li, Y Z Liu. A new method of secant-like for nonlinear equations. Commun Nonl Sci Numer Simulat 2009; 14(7): 2923–2927
107 L Zheng, C Q Gu. Fourth-order convergence theorem by using majorizing functions for super-Halley method in Banach spaces. Int J Comput Math 2012; 90(2): 423–434
108 L Zheng, C Q Gu. Semilocal convergence of a sixth-order method in Banach spaces. Numer Algor 2012; 61(3): 413–427
[1] Yuanheng WANG, Chanjuan PAN. Implicit iterative algorithms of the split common fixed point problem for Bregman quasi-nonexpansive mapping in Banach spaces[J]. Front. Math. China, 2022, 17(5): 797-811.
[2] Jipu MA. A geometry characteristic of Banach spaces with c1-norm[J]. Front. Math. China, 2014, 9(5): 1089-1103.
[3] Miao WANG,Jiang-Lun WU. Necessary and sufficient conditions for path-independence of Girsanov transformation for infinite-dimensional stochastic evolution equations[J]. Front. Math. China, 2014, 9(3): 601-622.
[4] Haitao CHE, Yiju WANG, Meixia LI. A smoothing inexact Newton method for P0 nonlinear complementarity problem[J]. Front Math Chin, 2012, 7(6): 1043-1058.
[5] Qiaofen JIANG, Huaijie ZHONG. Components of generalized Kato resolvent set and single-valued extension property[J]. Front Math Chin, 2012, 7(4): 695-702.
[6] Yunnan ZHANG, Huaijie ZHONG. Strongly irreducible operators and Cowen-Douglas operators on c0, lp (1≤p<∞)[J]. Front Math Chin, 2011, 6(5): 987-1001.
[7] MA Ji-pu. A Rank Theorem of Operators between Banach Spaces[J]. Front. Math. China, 2006, 1(1): 138-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed