| 1 |
J Appell, E De Pascale, J V Lysenko, P P Zabrejko. New results on Newton-Kantorovich approximations with applications to nonlinear integral equations. Numer Funct Anal Optim 1997; 18(1/2): 1–17
|
| 2 |
I K Argyros. On the approximate solutions of non-linear functional equations under mild differentiability conditions. Acta Math Hungar 1991; 58(1/2): 3–7
|
| 3 |
I K Argyros. On Newton’s method under mild differentiability conditions and applications. Appl Math Comput 1999; 102(2/3): 177–183
|
| 4 |
I K Argyros. A Newton-Kantorovich theorem for equations involving m-Fréchet differentiable operators and applications in radiative transfer. J Comput Appl Math 2001; 131(1/2): 149–159
|
| 5 |
I K Argyros. On the semilocal convergence of a fast two-step Newton method. Revista Colombiana de Matematicás 2008; 42(1): 15–24
|
| 6 |
I K Argyros. Convergence and Applications of Newton-type Iterations. New York: Springer-Verlag, 2008
|
| 7 |
I K Argyros, D Chen. On the midpoint method for solving nonlinear operator equations and applications to the solution of integral equations. Revue d’Analyse Numérique et de Théorie de l’Approximation 1994; 23(2): 139–152
|
| 8 |
I K Argyros, A Ezquerro, J M J, M A Gutiérrez, S Hernández. On the semilocal convergence of efficient Chebyshev-Secant-type methods. J Comput Appl Math 2011; 235(10): 3195–3206
|
| 9 |
I K Argyros, S Hilout. On the Gauss-Newton method. J Appl Math Comput 2011; 35(1/2): 537–550
|
| 10 |
I K Argyros, S Hilout. Improved local convergence of Newton’s method under weak majorant condition. J Comput Appl Math 2012; 236(7): 1892–1902
|
| 11 |
I K Argyros, L U Uko. An improved convergence analysis of a one-step intermediate Newton iterative scheme for nonlinear equations. J Appl Math Comput 2012; 38(1/2): 243–256
|
| 12 |
D K R Babajee, M Z Dauhoo. An analysis of the properties of the variants of Newton’s method with third order convergence. Appl Math Comput 2006; 183(1): 659–684
|
| 13 |
S Banach. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund Math 1922; 3(1): 133–181
|
| 14 |
A G Bao. The theoretical analysis of some high-order iterative methods for nonlinear equations. Master thesis. Hangzhou: Zhejiang Normal University, 2007 (in Chinese)
|
| 15 |
W H Bi, H M Ren, Q B Wu. A new semilocal convergence theorem of Müller’s method. Appl Math Comput 2008; 199(1): 375–384
|
| 16 |
J Biazar, M Ilie, A Khoshkenar. An improvement to an alternate algorithm for computing Adomian polynomials in special cases. Appl Math Comput 2006; 173(1): 582–592
|
| 17 |
V Candela, A Marquína. Recurrence relations for rational cubic methods I: The Halley method. Computing 1990; 44(2): 169–184
|
| 18 |
V Candela, A Marquína. Recurrence relations for rational cubic methods II: The Chebyshev method. Computing 1990; 45(4): 355–367
|
| 19 |
A L Cauchy. Sur la détermination des racines d’une équation algébrique ou transcendente. In: Leçons sur le Calcul Différentiel, Paris: Bure Fréres, 1829. Reprinted in: Euvres Complétes (II), Vol 4. Paris: Gauthier-Villars, 1899, 573–609 (in French)
|
| 20 |
D Chen, I K Argyros. The midpoint method for solving nonlinear operator equations in Banach space. Appl Math Lett 1992; 5(4): 7–9
|
| 21 |
D Chen, I K Argyros, Q S Qian. A note on the Halley method in Banach spaces. Appl Math Comput 1993; 58(2/3): 215–224
|
| 22 |
J H Chen, W G Li. Convergence behaviour of inexact Newton methods under weak Lipschitz condition. J Comput Appl Math 2006; 191(1): 143–164
|
| 23 |
L Chen, C Q Gu, Y F Ma. Semilocal convergence for a fifth-order Newton’s method using recurrence relations in Banach spaces. J Appl Math 2011; 2011: 786306
|
| 24 |
L Chen, C Q Gu, Y F Ma. Recurrence relations for the Harmonic mean Newton’s method in Banach spaces. J Comput Anal Appl 2012; 14(6): 1154–1164
|
| 25 |
L Chen, Y F Ma. A new modified King-Werner method for solving nonlinear equations. Comput Math Appl 2011; 62(10): 3700–3705
|
| 26 |
L Chen, Y F Ma. A fourth-order iterative method for solving nonlinear equations. J Huaibei Normal Univ (Natural Science) 2012; 33(1): 5–10
|
| 27 |
W H Chen, Z Y Lu. An algorithm for Adomian decomposition method. Appl Math Comput 2004; 159(1): 221–235
|
| 28 |
C B Chun. Iterative methods improving Newton’s method by the decomposition method. Comput Math Appl 2005; 50(10/11/12): 1559–1568
|
| 29 |
J E DennisR B Schnabel. Numerical Methods for Unconstrained Optimisation and Nonlinear Equations. Englewood Cliffs: Prentice Hall, 1983
|
| 30 |
P Deuflhard, G Heindl. Affine invariant convergence theorems for Newton’s method and extensions to related methods. SIAM J Numer Anal 1979; 16(1): 1–10
|
| 31 |
J A Ezquerro, D González, M A Hernández. Majorizing sequences for Newton’s method from initial value problems. J Comput Appl Math 2012; 236(9): 2246–2258
|
| 32 |
J A Ezquerro, J M Gutiérrez, M A Hernández, M A Salanova. The application of an inverse-free Jarratt-type approximation to nonlinear integral equations of Hammerstein-type. Comput Math Appl 1998; 36(4): 9–20
|
| 33 |
J A Ezquerro, M A Hernández. Relaxing convergence conditions for an inverse-free Jarratt-type approximation. J Comput Appl Math 1997; 83(1): 131–135
|
| 34 |
J A Ezquerro, M A Hernández. Avoiding the computation of the second Fréchet-derivative in the convex acceleration of Newton’s method. J Comput Appl Math 1998; 96(1): 1–12
|
| 35 |
J A Ezquerro, M A Hernández. New iterations of R-order four with reduced computational cost. BIT Numer Math 2009; 49(2): 325–342
|
| 36 |
G C Feng. Iterative Methods for Systems of Nonlinear Equations. Shanghai: Shanghai Scientific & Technical Publishers, 1989 (in Chinese)
|
| 37 |
I Fenyö, A Rényi. Über die lösung der im Banachschen Raume definierten nichtlinearen gleichungen. Acta Math Acad Sci Hungar 1954; 5(1/2): 85–93
|
| 38 |
M Frontini, E Sormani. Some variant of Newton’s method with third-order convergence. Appl Math Comput 2003; 140(2/3): 419–426
|
| 39 |
M Frontini, E Sormani. Modified Newton’s method with third- order convergence and multiple roots. J Comput Appl Math 2003; 156(2): 345–354
|
| 40 |
J Gerlach. Accelerated convergence in Newton’s method. SIAM Rev 1994; 36(2): 272–276
|
| 41 |
Y H Geum, Y I Kim. A penta-parametric family of fifteenth-order multipoint methods for nonlinear equations. Appl Math Comput 2010; 217(6): 2311–2319
|
| 42 |
M Grau, M Noguera. A variant of Cauchy’s method with accelerated fifth-order convergence. Appl Math Lett 2004; 17(5): 509–517
|
| 43 |
J M Gutiérrez. A new semilocal convergence theorem for Newton’s method. J Comput Appl Math 1997; 79(1): 131–145
|
| 44 |
J M Gutiérrez, M A Hernández. Recurrence relations for the super-Halley method. Comput Math Appl 1998; 36(7): 1–8
|
| 45 |
Gutiérrez. M. and Hernández, M.A., An acceleration of Newton’s method: super-Halley method. Appl Math Comput 2001; 117(2/3): 223–239
|
| 46 |
E Halley. Methodus Nova Accurata & facilis inveniendi Radices Æqùationium quarumcumque generaliter, sine prævia Reductione. Phil Trans Royal Soc London 1694; 18: 136–148
|
| 47 |
D F Han. The convergence on a family of iterations with cubic order. J Comput Math 2001; 19(5): 467–474
|
| 48 |
V I HasanovI G IvanovG Nedjibov. A new modification of Newton’s method. In: Applications of Mathematics in Engineering and Economics, Proceedings of the XXVII Summer School. Sofia: Heron Press, 2002, 278–286
|
| 49 |
M A Hernández. Chebyshev’s approximation algorithms and applications. Comput Math Appl 2001; 41(3/4): 433–445
|
| 50 |
M A Hernández, M A Salanova. A family of Chebyshev type methods in Banach spaces. Int J Comput Math 1996; 61(1/2): 145–154
|
| 51 |
H H H Homeier. A modified Newton method for root finding with cubic convergence. J Comput Appl Math 2003; 157(1): 227–230
|
| 52 |
H H H Homeier. A modified Newton method with cubic convergence: the multivariate case. J Comput Appl Math 2004; 169(1): 161–169
|
| 53 |
H H H Homeier. On Newton-type methods with cubic convergence. J Comput Appl Math 2005; 176(2): 425–432
|
| 54 |
H H H Homeier. On Newton-type methods for multiple roots with cubic convergence. J Comput Appl Math 2009; 231(1): 249–254
|
| 55 |
M Hosseini. Adomian decomposition method with Chebyshev polynomials. Appl Math Comput 2006; 175(2): 1685–1693
|
| 56 |
X D HuangZ G ZengY N Ma. The Theory and Methods for Nonlinear Numerical Analysis. Wuhan: Wuhan University Press, 2004 (in Chinese)
|
| 57 |
Z D Huang. A note on the Kantorovich theorem for Newton iteration. J Comput Appl Math 1993; 47(2): 211–217
|
| 58 |
L Kantorovic. Functional analysis and applied mathematics. Uspehi Mat Nauk (N S), 1948, 3: 89‒185 (in Russian). Translated by Benster C D. National Bureau of Standards, Report No 1509, Washington, 1952
|
| 59 |
S K Khattri, I K Argyros. Sixth order derivative free family of iterative methods. Appl Math Comput 2011; 217(12): 5500–5507
|
| 60 |
Y-I Kim, C B Chun. New twelfth-order modifications of Jarratt’s method for solving nonlinear equations. Studies Nonl Sci 2010; 1(1): 14–18
|
| 61 |
J S Kou. Some variants of Cauchy’s method with accelerated fourth-order convergence. J Comput Appl Math 2008; 213(1): 71–78
|
| 62 |
J S Kou, Y T Li. Modified Chebyshev’s method free from second derivative for non-linear equations. Appl Math Comput 2007; 187(2): 1027–1032
|
| 63 |
J S Kou, Y T Li, X H Wang. A variant of super-Halley method with accelerated fourth-order convergence. Appl Math Comput 2007; 186(1): 535–539
|
| 64 |
J S Kou, X H Wang, Y T Li. Some eighth-order root-finding three-step methods. Commun Nonl Sci Numer Simulat 2010; 15(3): 536–544
|
| 65 |
O Layeni. Remark on modifications of Adomian decomposition method. Appl Math Comput 2008; 197(1): 167–171
|
| 66 |
Q Y LiZ MoL Q Qi. Numerical Methods for Systems of Nonlinear Equations. Beijing: Science Press, 1987 (in Chinese)
|
| 67 |
X W Li, C L Mu, J W Ma, C Wang. Sixteenth-order method for nonlinear equations. Appl Math Comput 2010; 215(10): 3754–3758
|
| 68 |
J Liu. The Theoretical Analysis of High-Order Iterative Methods for Non-Linear Equations. Master thesis, Hangzhou: Zhejiang University, 2004
|
| 69 |
X G Luo. A note on the new iteration method for solving algebraic equations. Appl Math Comput 2005; 171(2): 1177–1183
|
| 70 |
A Melman. Geometry and convergence of Euler’s and Halley’s methods. SIAM Rev 1997; 39(4): 728–735
|
| 71 |
H Miao. The theoretical analysis of some iterative methods for nonlinear equations. Master thesis, Hangzhou: Zhejiang University, 2006
|
| 72 |
M A Noor, W A Khan, K I Noor, E Al-said. Higher-order iterative methods free from second derivative for solving nonlinear equations. Internat J Phys Sci 2011; 6(8): 1887–1893
|
| 73 |
K I Noor, M A Noor. Predictor-corrector Halley method for non-linear equations. Appl Math Comput 2007; 188(2): 1587–1591
|
| 74 |
J M OrtegaW C Rheinboldt. Iterative Solution of NonlinearEquations in Several Variables. Philadelphia: SIAM, 1970
|
| 75 |
A Ostrowski. Solution of Equations and Systems of Equations. New York: Academic Press, 1973
|
| 76 |
A Y Özban. Some new variants of Newton’s method. Appl Math Lett 2004; 17(6): 677–682
|
| 77 |
H M Ren, I K Argyros. A new semilocal convergence theorem for a fast iterative method with nondifferentiable operators. J Appl Math Comput 2010; 34(1/2): 39–46
|
| 78 |
H M Ren, Q B Wu, W H Bi. On convergence of a new secant-like method for solving nonlinear equations. Appl Math Comput 2010; 217(2): 583–589
|
| 79 |
J Rokne. Newton’s method under mild differentiability conditions with error analysis. Numer Math 1971; 18(5): 401–412
|
| 80 |
P Sargolzaei, F Soleymani. Accurate fourteenth-order methods for solving nonlinear equations. Numer Algor 2011; 58(4): 513–527
|
| 81 |
T R Scavo, J B Thoo. On the geometry of Halley’s method. Amer Math Monthly 1995; 102(5): 417–426
|
| 82 |
J R Sharma, R K Guha, P Gupta. Some efficient derivative free methods with memory for solving nonlinear equations. Appl Math Comput 2012; 219(2): 699–707
|
| 83 |
S Smale. Newton’s method estimates from data at one point. In: The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics. New York: Springer-Verlag, 1986, 185–196
|
| 84 |
S Smale. Algorithms for solving equations. In: Proceedings of the International Congress of Mathematicians. Providence: AMS, 1987, 172–195
|
| 85 |
F Soleymani. Letter to the editor regarding the article by Khattri: derivative free algorithm for solving nonlinear equations. Computing 2013; 95(2): 159–162
|
| 86 |
M Tatari, M Dehghan. On the convergence of He’s variational iteration method. J Comput Appl Math 2007; 207(1): 121–128
|
| 87 |
R Thukral. Introduction to a Newton-type method for solving nonlinear equations. Appl Math Comput 2008; 195(2): 663–668
|
| 88 |
J F Traub. Iterative Methods for the Solution of Equations. Englewood Cliffs: Prentice-Hall, 1964
|
| 89 |
D R Wang. Numerical Methods for Nonlinear Equations and Optimization. Beijing: People’s Education Press, 1979
|
| 90 |
X H Wang. Convergence of a family of Halley’s method under weak condition. Chinese Sci Bull 1997; 42(2): 119–121
|
| 91 |
X H Wang. Convergence of the iteration of Halley’s family and Smale operator class in Banach space. Sci China Ser A 1998; 41(7): 700–709
|
| 92 |
X H Wang. Convergence of Newton’s method and inverse function theorem in Banach space. Math Comp 1999; 68(225): 169–186
|
| 93 |
X H Wang. Convergence of Newton’s method and uniqueness of thesolution of equations in Banach space. IMA J Numer Anal 2000; 20(1): 123–134
|
| 94 |
X H Wang, J Dzunić, T Zhang. On an efficient family of derivative free three-point methods for solving nonlinear equations. Appl Math Comput 2012; 219(4): 1749–1760
|
| 95 |
X H Wang, D F Han. Criterion α and Newton’s method in the weak conditions. Math Numer Sin 1997; 19(1): 103–112
|
| 96 |
X H Wang, J S Kou. Semilocal convergence and R-order for modified Chebyshev-Halley methods. Numer Algor 2013; 64(1): 105–126
|
| 97 |
X H Wang, J S Kou, Y T Li. Modified Jarratt method with sixth-order convergence. Appl Math Lett 2009; 22(12): 1798–1802
|
| 98 |
X H Wang, C Li. Local and global behaviors for algorithms of solving equations. Chinese Sci Bull 2001; 46(6): 444–451
|
| 99 |
X H Wang, C Li. On the united theory of the family of Euler-Halley type methods with cubical convergence in Banach spaces. J Comput Math 2003; 21(2): 195–200
|
| 100 |
X H Wang, C Li. Convergence of Newton’s method and uniqueness of the solution of equations in Banach spaces II. Acta Math Sin Engl Ser 2003; 19(2): 405–412
|
| 101 |
S Weerakoon, T G I Fernando. A variant of Newton’s method with accelerated third-order convergence. Appl Math Lett 2000; 13(8): 87–93
|
| 102 |
M Wu. A convergence theorem for the Newton-like methods under some kind of weak Lipschitz conditions. J Math Anal Appl 2008; 339(2): 1425–1431
|
| 103 |
M Wu. Some Theories About Iterative Methods for Solving Nonlinear Equations. Ph D thesis. Hangzhou: Zhejiang University, 2008
|
| 104 |
P Wu. Iterative Methods with Higher-Order Convergence for Solving Nonlinear Equations and Analysis Convergence. Ph D thesis. Hangzhou: Zhejiang University, 2008
|
| 105 |
T J Ypma. Affine invariant convergence results for Newton’s method. BIT Numer Math 1982; 22(1): 108–118
|
| 106 |
H Zhang, D S Li, Y Z Liu. A new method of secant-like for nonlinear equations. Commun Nonl Sci Numer Simulat 2009; 14(7): 2923–2927
|
| 107 |
L Zheng, C Q Gu. Fourth-order convergence theorem by using majorizing functions for super-Halley method in Banach spaces. Int J Comput Math 2012; 90(2): 423–434
|
| 108 |
L Zheng, C Q Gu. Semilocal convergence of a sixth-order method in Banach spaces. Numer Algor 2012; 61(3): 413–427
|