Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2023, Vol. 18 Issue (3) : 165-174    https://doi.org/10.3868/s140-DDD-023-0013-x
RESEARCH ARTICLE
Parameters estimation and application of generalized exponential distribution under grouped and right-censored data
Yuzhu TIAN1,2(), Maozai TIAN2, Ping CHEN3
1. Center for Applied Statistics, Renmin University of China, Beijing 100872, China
2. School of Mathematics and Statistics, Tianshui Normal University, Tianshui 741001, China
3. Dependment of Mathematics, Southeast University, Nanjing 210096, China
 Download: PDF(594 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Generalized exponential distribution is a class of important distribution in lifedata analysis, especially in some skewed lifedata. The Parameter estimation problem for generalized exponential distribution model with grouped and right-censored data is considered. The maximum likelihood estimators are obtained using the EM algorithm. Some simulations are carried out to illustrate that the proposed algorithm is effective for the model. Finally, a set of medicine data is analyzed by generalized exponential distribution.

Keywords Generalized exponential distribution      grouped and right-censored data      EM algorithm     
Corresponding Author(s): Yuzhu TIAN   
Online First Date: 16 November 2023    Issue Date: 07 December 2023
 Cite this article:   
Yuzhu TIAN,Maozai TIAN,Ping CHEN. Parameters estimation and application of generalized exponential distribution under grouped and right-censored data[J]. Front. Math. China, 2023, 18(3): 165-174.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.3868/s140-DDD-023-0013-x
https://academic.hep.com.cn/fmc/EN/Y2023/V18/I3/165
η=(α,λ)nsα^λ^
60 100 1.4619 6.0934E?2
200 1.4753 6.0963E?2
500 1.4960 6.2527E?2
120 100 1.5248 6.1241E?2
200 1.5307 6.1609E?2
500 1.5450 6.1889E?2
(1.5,0.06) 200 100 1.5168 6.1106E?2
200 1.5345 6.1624E?2
500 1.5423 6.1427E?2
500 100 1.5260 6.0886E?2
200 1.5257 6.0722E?2
500 1.5267 6.0750E?2
1000 100 1.5259 6.0643E?2
200 1.5239 6.0552E?2
500 1.5256 6.0557E?2
Tab.1  Parameter estimates (mean) for the generalized exponential distribution under data grouping and right censored data
η=(α,λ)nsα^λ^
60 100 1.4163E?1 3.0760E?4
200 1.1328E?1 2.1400E?4
500 1.3976E?1 1.5213E?4
120 100 2.9459E?2 5.1965E?5
200 2.7928E?2 5.1485E?5
500 3.8678E?2 4.9290E?5
(1.5,0.06) 200 100 1.2899E?2 3.6575E?5
200 1.4822E?2 3.2750E?5
500 1.3759E?2 2.9961E?5
500 100 5.1914E?3 1.4735E?5
200 3.9203E?3 1.2837E?5
500 3.8831E?3 1.2434E?5
1000 100 1.6000E?3 7.1194E?6
200 1.6385E?3 6.3407E?6
500 1.6379E?3 6.3476E?6
Tab.2  Parameter estimation mean square error (mse) for the generalized exponential distribution under data grouping and right censored data
Interval IjDeath numbers DjOutfollowed numbers Wj
1 456 0
2 226 39
3 152 22
4 171 23
5 135 24
6 125 107
7 83 133
8 74 102
9 51 68
10 42 64
11 43 45
12 34 53
13 18 33
14 9 27
15 6 23
16 0 0
Tab.3  Survival data of male patients with angina pectoris
Fig.1  Plot of the survival function and hazard rate function in male patients with angina pectoris α^=0.769<1
1 D G Chen, Y L Lio. Parameter estimations for generalized exponential distribution under progressive type-I interval censoring. Comput Stat Data Anal 2010; 54(6): 1581–1591
2 R D Gupta, D Kundu. Generalized exponential distributions. Austr New Zealand J Statist 1999; 41(2): 173–188
3 R D Gupta, D Kundu. Generalized exponential distribution: existing results and some recent developments. J Statist Plann Inference 2007; 137(11): 3537–3547
4 R D Gupta, D Kundu. Generalized exponential distribution: Bayesian estimations. Comput Statist Data Anal 2008; 52(4): 1873–1883
5 D Kundu, B Pradhan. Estimating the parameters of the generalized exponential distribution in presence of hybrid censoring. Commun Stat Theory Methods 2009; 38(12): 2030–2041
6 E T LeeJ W Wang. Statistical Methods for Survival Data Analysis, 3rd ed. New York: John Wiley & Sons, 2003
7 L P Liu. Estimation of MLE for Weibull distribution with grouped and censored data. Chinese Journal of Applied Probability and Statistics 2001; 17(2): 133–138
8 X Liu, H Chen, H L Fei. Estimation of the parameters in the lognormal distribution with grouped and right-censored data. Chinese Journal of Applied Probability and Statistics 2008; 24(4): 371–380
9 A N Pettitt. Re-weighted least squares estimation with censored and grouped data: an application of the EM algorithm. Royal Statistical Society 1985; 47(2): 253–260
10 M Z Raqab. Inferences for generalized exponential distribution based on record statistics. J Statist Plann Inference 2002; 104(2): 339–350
11 M Z Raqab, M T Madi. Bayesian inference for the generalized exponential distribution. J Statist Comput Simul 2005; 75(10): 841–852
12 A M Sarhan. Analysis of incomplete, censored data in competing risks models with generalized exponential distribution. IEEE Trans Reliability 2007; 56(1): 132–138
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed