| 1 |
M F Akay. Support vector machines combined with feature selection for breast cancer diagnosis. Expert Syst Appl 2009; 36(2): 3240–3247
|
| 2 |
P L Bartlett, M H Wegkamp. Classification with a reject option using a hinge loss. J Mach Learn Res 2008; 9: 1823–1840
|
| 3 |
A Beck. First-Order Methods in Optimization. MOS-SIAM Series on Optimization, Vol 25. Philadelphia, PA: SIAM, 2017
|
| 4 |
J P Brooks. Support vector machines with the ramp loss and the hard margin loss. Oper Res 2011; 59(2): 467–479
|
| 5 |
L J Cao, S S Keerthi, C J Ong, J Q Zhang, U Periyathamby, X J Fu, H P Lee. Parallel sequential minimal optimization for the training of support vector machines. IEEE Trans Neural Netw 2006; 17(4): 1039–1049
|
| 6 |
E Carrizosa, A Nogales-Gómez, Morales D Romero. Heuristic approaches for support vector machines with the ramp loss. Optim Lett 2014; 8(3): 1125–1135
|
| 7 |
C-C Chang, C-W Hsu, C-J Lin. The analysis of decomposition methods for support vector machines. IEEE Trans Neural Netw 2000; 11(4): 1003–1008
|
| 8 |
C-C Chang, C-J Lin. LIBSVM: A library for support vector machines. ACM Trans Intell Syst Technol 2011; 2(3): 27
|
| 9 |
K-W Chang, C-J Hsieh, C-J Lin. Coordinate descent method for large-scale L2-loss linear support vector machines. J Mach Learn Res 2008; 9: 1369–1398
|
| 10 |
O Chapelle. Training a support vector machine in the primal. Neural Comput 2007; 19(5): 1155–1178
|
| 11 |
O Chapelle, P Haffner, V N Vapnik. Support vector machines for histogram-based image classification. IEEE Trans Neural Netw 1999; 10(5): 1055–1064
|
| 12 |
H L Chen, B Yang, J Liu, D Y Liu. A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis. Expert Syst Appl 2011; 38(7): 9014–9022
|
| 13 |
F H Clarke. Optimization and Nonsmooth Analysis. New York: John Wiley & Sons, 1983
|
| 14 |
R CollobertF SinzJ WestonL Bottou. Trading convexity for scalability. In: ICML 2006, Proceedings of the 23rd International Conference on Machine Learning (Cohen W W, Moore A, eds). New York: Association for Computing Machinery, 2006, 201–208
|
| 15 |
R Collobert, F Sinz, J Weston, L Bottou. Large scale transductive SVMs. J Mach Learn Res 2006; 7: 1687–1712
|
| 16 |
C Cortes, V Vapnik. Support vector networks. Mach Learn 1995; 20(3): 273–297
|
| 17 |
B J De Kruif, T J A De Vries. Pruning error minimization in least squares support vector machines. IEEE Trans Neural Netw 2003; 14(3): 696–702
|
| 18 |
N Y DengY J TianC H Zhang. Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions. Boca Raton, FL: CRC Press, 2012
|
| 19 |
S Ertekin, L Bottou, C L Giles. Nonconvex online support vector machines. IEEE Trans Pattern Anal Mach Intell 2011; 33(2): 368–381
|
| 20 |
R-E Fan, K-W Chang, C-J Hsieh, X-R Wang, C-J Lin. LIBLINEAR: A library for large linear classification. J Mach Learn Res 2008; 9: 1871–1874
|
| 21 |
R-E Fan, P-H Chen, C-J Lin. Working set selection using second order information for training support vector machines. J Mach Learn Res 2005; 6: 1889–1918
|
| 22 |
Y L Feng, Y N Yang, X L Huang, S Mehrkanoon, J A K Suykens. Robust support vector machines for classification with nonconvex and smooth losses. Neural Comput 2016; 28(6): 1217–1247
|
| 23 |
I E Frank, J H Friedman. A statistical view of some chemometrics regression tools. Technometrics 1993; 35(2): 109–135
|
| 24 |
H GhanbariM H LiK Scheinberg. Novel and efficient approximations for zero-one loss of linear classifiers, 2019, arXiv: 1903.00359
|
| 25 |
L W Huang, Y H Shao, J Zhang, Y T Zhao, J Y Teng. Robust rescaled hinge loss twin support vector machine for imbalanced noisy classification. IEEE Access 2019; 7: 65390–65404
|
| 26 |
X L Huang, L Shi, J A K Suykens. Support vector machine classifier with pinball loss. IEEE Trans Pattern Anal Mach Intell 2014; 36(5): 984–997
|
| 27 |
X L Huang, L Shi, J A K Suykens. Ramp loss linear programming support vector machine. J Mach Learn Res 2014; 15: 2185–2211
|
| 28 |
X L Huang, L Shi, J A K Suykens. Sequential minimal optimization for SVM with pinball loss. Neurocomputing 2015; 149(C): 1596–1603
|
| 29 |
X L Huang, L Shi, J A K Suykens. Solution path for pin-SVM classifiers with positive and negative τ values. IEEE Trans Neural Netw Learn Syst 2017; 28(7): 1584–1593
|
| 30 |
V JumutcX L HuangJ A K Suykens. Fixed-size Pegasos for hinge and pinball loss SVM. In: The 2013 International Joint Conference on Neural Networks (IJCNN). Piscataway, NJ: IEEE, 2013
|
| 31 |
S S Keerthi, D DeCoste. A modified finite Newton method for fast solution of large scale linear SVMs. J Mach Learn Res 2005; 6: 341–361
|
| 32 |
S S Keerthi, E G Gilbert. Convergence of a generalized SMO algorithm for SVM classifier design. Machine Learning 2002; 46: 351–360
|
| 33 |
S S Keerthi, S K Shevade. SMO algorithm for least-squares SVM formulations. Neural Comput 2003; 15(2): 487–507
|
| 34 |
S S Keerthi, S K Shevade, C Bhattacharyya, K R K Murthy. Improvements to Platt’s SMO algorithm for SVM classifier design. Neural Comput 2014; 13(3): 637–649
|
| 35 |
N M Khan, R Ksantini, I S Ahmad, B Boufama. A novel SVM+NDA model for classification with an application to face recognition. Pattern Recognition 2012; 45(1): 66–79
|
| 36 |
C-P Lee, C-J Lin. A Study on L2-loss (squared hinge-loss) multiclass SVM. Neural Comput 2013; 25(5): 1302–1323
|
| 37 |
Y-J Lee, O L Mangasarian. SSVM: a smooth support vector machine for classification. Comput Optim Appl 2001; 20(1): 5–22
|
| 38 |
H Li. Statistical Learning Methods, 2nd ed. Beijing: Tsinghua Univ Press, 2019 (in Chinese)
|
| 39 |
J T Li, Y M Jia, W L Li. Adaptive huberized support vector machine and its application to microarray classification. Neural Computing and Applications 2011; 20(1): 123–132
|
| 40 |
C-J Lin. On the convergence of the decomposition method for support vector machines. IEEE Trans Neural Netw 2001; 12(6): 1288–1298
|
| 41 |
C-J Lin. Asymptotic convergence of an SMO algorithm without any assumptions. IEEE Trans Neural Netw 2002; 13(1): 248–250
|
| 42 |
D L Liu, Y Shi, Y J Tian, X K Huang. Ramp loss least squares support vector machine. J Comput Sci 2016; 14: 61–68
|
| 43 |
J López, J A K Suykens. First and second order SMO algorithms for LS-SVM classifiers. Neural Process Lett 2011; 33(1): 31–44
|
| 44 |
D Mančev. A sequential dual method for the structured ramp loss minimization. Facta Univ Ser Math Inform 2005; 30(1): 13–27
|
| 45 |
L Mason, P L Bartlett, J Baxter. Improved generalization through explicit optimization of margins. Mach Learn 2000; 38(3): 243–255
|
| 46 |
S Y Park, Y F Liu. Robust penalized logistic regression with truncated loss functions. Canad J Statist 2011; 39(2): 300–323
|
| 47 |
F Pérez-Cruz, A Navia-Vázquez, A R Figueiras-Vidal, Rodríguez A Artés-. Empirical risk minimization for support vector classifiers. IEEE Trans Neural Netw 2003; 14(2): 296–303
|
| 48 |
R T RockafellarR J-B Wets. Variational Analysis, Corrected 3rd printing. Grundlehren der Mathematischen Wissenschaften, Vol 317. Berlin: Springer-Verlag, 2009
|
| 49 |
T Sabbah, M Ayyash, M Ashraf. Hybrid support vector machine based feature selection method for text classification. The International Arab Journal of Information Technology 2018; 15(3A): 599–609
|
| 50 |
S Shalev-Shwartz, Y Singer, N Srebro, A Cotter. Pegasos: primal estimated sub-gradient solver for SVM. Math Program 2011; 127(1): Ser B, 3–30
|
| 51 |
Y H Shao, L M Liu, L W Huang, N Y Deng. Key issues of support vector machines and future prospects. Sci Sin Math 2020; 50(9): 1233–1248
|
| 52 |
Y H Shao, K L Yang, M Z Liu, Z Wang, C N Li, W J Chen. From support vector machine to nonparallel support vector machine. Operations Research Transactions 2018; 22(2): 55–65(inChinese)
|
| 53 |
W Sharif, I T R Yanto, N A Samsudin, M M Deris, A Khan, M F Mushtaq, M Ashraf. An optimised support vector machine with Ringed Seal Search algorithm for efficient text classification. Journal of Engineering Science and Technology 2019; 14(3): 1601–1613
|
| 54 |
X T Shen, G C Tseng, X G Zhang, W H Wong. On ψ-learning. J Amer Statist Assoc 2003; 98(463): 724–734
|
| 55 |
X Shen, L F Niu, Z Q Qi, Y J Tian. Support vector machine classifier with truncated pinball loss. Pattern Recognition 2017; 68: 199–210
|
| 56 |
I SteinwartA Christmann. Support Vector Machines. New York: Springer, 2008
|
| 57 |
J A K Suykens, J Vandewalle. Least squares support vector machine classifiers. Neural Process Lett 1999; 9(3): 293–300
|
| 58 |
M Tanveer, S Sharma, R Rastogi, P Anand. Sparse support vector machine with pinball loss. Trans Emerg Telecommun Technol 2021; 32(2): e3820
|
| 59 |
P VenkateswarLalG R NittaA Prasad. Ensemble of texture and shape descriptors using support vector machine classification for face recognition. J Ambient Intell Humaniz Comput, 2019, https://doi:10.1007/s12652-019-01192-7, in press
|
| 60 |
G Wahba. Support vector machines, reproducing kernel Hilbert spaces, and randomized GACV. In: Advances in Kernel Methods—Support Vector Learning (Schölkopf B, Burges C J C, Smola A J, eds). Cambridge, MA: MIT Press, 1998, 69–88
|
| 61 |
H J Wang, Y H Shao, N H Xiu. Proximal operator and optimality conditions for ramp loss SVM. Optim Lett 2022; 16: 999–1014
|
| 62 |
H J Wang, Y H Shao, S L Zhou, C Zhang, N H Xiu. Support vector machine classifier via L0/1 soft-margin loss. IEEE Trans Pattern Anal Mach Intell 2022; 44(10): 7253–7265
|
| 63 |
Q Wang, Y Ma, K Zhao, Y J Tian. A comprehensive survey of loss functions in machine learning. Ann Data Sci 2020; 9: 187–212
|
| 64 |
Y C Wu, Y F Liu. Robust truncated hinge loss support vector machines. J Amer Statist Assoc 2007; 102(479): 974–983
|
| 65 |
J M Xu, L Li. A face recognition algorithm based on sparse representation and support vector machine. Computer Technology and Development 2018; 28(2): 59–63(inChinese)
|
| 66 |
Y Y Xu, I Akrotirianakis, A Chakraborty. Proximal gradient method for huberized support vector machine. Pattern Anal Appl 2016; 19(4): 989–1005
|
| 67 |
Y Q Yan, Q N Li. An efficient augmented Lagrangian method for support vector machine. Optim Methods Softw 2020; 35(4): 855–883
|
| 68 |
L M Yang, H W Dong. Support vector machine with truncated pinball loss and its application in pattern recognition. Chemometrics Intell Lab Syst 2018; 177: 89–99
|
| 69 |
Y Yang, H Zou. An efficient algorithm for computing the HHSVM and its generalizations. J Comput Graph Statist 2013; 22(2): 396–415
|
| 70 |
Z J Yang, Y T Xu. A safe accelerative approach for pinball support vector machine classifier. Knowledge-Based Syst 2018; 147: 12–24
|
| 71 |
J Yin, Q N Li. A semismooth Newton method for support vector classification and regression. Comput Optim Appl 2019; 73(2): 477–508
|
| 72 |
C Zhang. Support Vector Machine Classifier via 0-1 Loss Function. MS Thesis. Beijing: Beijing Jiaotong University, 2019 (in Chinese)
|
| 73 |
T Zhang, F J Oles. Text categorization based on regularized linear classification methods. Information Retrieval 2001; 4(1): 5–31
|
| 74 |
W Zhang, T Yoshida, X J Tang. Text classification based on multi-word with support vector machine. Knowledge-Based Syst 2008; 21(8): 879–886
|
| 75 |
L ZhaoM MammadovJ Yearwood. From convex to nonconvex: a loss function analysis for binary classification. In: 2010 IEEE International Conference on Data Mining Workshops. Piscataway, NJ: IEEE, 2010, 1281–1288
|
| 76 |
Y P Zhao, J G Sun. Recursive reduced least squares support vector regression. Pattern Recognition 2009; 42(5): 837–842
|
| 77 |
S S Zhou. Sparse LSSVM in primal using Cholesky factorization for large-scale problems. IEEE Trans Neural Netw Learn Syst 2016; 27(4): 783–795
|
| 78 |
W X Zhu, Y Y Song, Y Y Xiao. Support vector machine classifier with huberized pinball loss. Eng Appl Artif Intell 2020; 91: 103635
|