Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2023, Vol. 18 Issue (6) : 415-430    https://doi.org/10.3868/s140-DDD-023-0029-x
Researches on point-discrete families
Shou LIN1,2(), Rongxin SHEN3
1. School of Mathematics and Statistics, Minnan Normal University, Zhangzhou 363000, China
2. Institute of Mathematics, Ningde Normal University, Ningde 352100, China
3. Department of Mathematics and Physics, Taizhou University, Taizhou 225300, China
 Download: PDF(877 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Based on the modern development of Metrization theorem for context, the main results obtained in recent ten years on point-discrete families are summarized. This paper mainly introduces the theory of the spaces with σ-point-discrete bases, the spaces with certain σ-point-discrete networks, and the relationship between the above spaces and the spaces with certain σ-compact-finite networks.

Keywords Point-discrete families      compact-finite families      generalized metrizable spaces      k-net      weak bases     
Corresponding Author(s): Shou LIN   
Online First Date: 27 February 2024    Issue Date: 05 March 2024
 Cite this article:   
Shou LIN,Rongxin SHEN. Researches on point-discrete families[J]. Front. Math. China, 2023, 18(6): 415-430.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.3868/s140-DDD-023-0029-x
https://academic.hep.com.cn/fmc/EN/Y2023/V18/I6/415
  
1 P S AleksandrovV V FedorchukV I Zcev. The main aspects in the development of set-theoretic topology. Uspekhi Mat Nauk, 1978, 33(3): 3−48 (in Russian)
2 A V Arhangel’skii. An addition theorem for the weight of sets lying in bicompacts. Dokl Akad Nauk SSSR 1959; 126(2): 239–241
3 A V Arhangel’skii. Mappings and spaces. Russian Math Surveys 1966; 21(4): 115–162
4 C E AullR Lowen. Handbook of the History of General Topology, Vol 1. Dordrecht: Kluwer Academic Publishers, 1997
5 R H Bing. Metrization of topological spaces. Canad J Math 1951; 3(2): 175–186
6 J R Boone. Some characterizations of paracompactness in k-spaces. Fund Math 1971; 72(2): 145–153
7 D K Burke, S W Davis. Spaces with σ-weakly hereditarily closure preserving base. Topology Proc 2010; 35: 9–18
8 D K Burke, R Engelking, D J Lutzer. Hereditarily closure-preserving collections and metrization. Proc Amer Math Soc 1975; 51(2): 483–488
9 D K BurkeD J Lutzer. Recent advances in the theory of generalized metric spaces. In: Topology Proc 9th Ann Spring Topological Conf (Memphis State Univ, 1975). Lect Notes Pure and Appl Math 24. New York: Marcel Dekker Inc, 1976, 1–70
10 J L FangHausdorff. Biographies of world-famous mathematicians. Beijing: Science Press, 1995, 1240–1246
11 S P Franklin. Spaces in which sequences suffice. Fund Math 1965; 57(1): 107–115
12 Z Gao. ℵ-space is invariant under perfect mappings. Questions Answers Gen Topology 1987; 5(2): 271–279
13 X Ge, J Shen, Y Ge. Spaces with σ-weakly hereditarily closure-preserving sn-networks. Novi Sad J Math 2007; 37(1): 33–37
14 Y Ge. On sn-Metrizable spaces. Acta Math Sin Engl Ser 2002; 45(2): 355–360
15 J G Jiang. On the metrizability of affine compactness and topological spaces, Acta Math
16 G Gruenhage. Generalized metric spaces. In: Handbook of Set-theoretic Topology (Kunen K, Vaughan J E, eds). Amsterdam: Elsevier Science Publishers B V, 1984, 423–501
17 G Gruenhage. Generalized metric spaces and metrization. In: Recent Progress in General Topology (Hušek M, Van Mill J, eds). Papers from the Prague Topological Symp (Prague, 1991). Amsterdam: Elsevier Science Publishers B V, 1992, 239–274
18 G Gruenhage. Metrizable spaces and generalizations. In: Recent Progress in General Topology II (Hušek M, Van Mill J, eds). Papers from the Prague Topological Symp (Prague, 2001). Amsterdam: Elsevier Science Publishers B V, 2002, 201–225
19 G Gruenhage. A survey of D-spaces. Contemp Math 2011; 533: 13–28
20 G Gruenhage. Generalized metrizable spaces. In: Recent Progress in General Topology III (Hart K P, Van Mill J, Simon P, eds). Papers from the Prague Topological Symp (Prague, 2011). Amsterdam: Atlantis Press, 2014, 471–505
21 J A Guthrie. A characterization of ℵ0-spaces. General Topology Appl 1971; 1(2): 105–110
22 K P HartJ Van MillP Simon. Recent Progress in General Topology III. Papers from the Prague Topological Symp (Prague, 2011). Amsterdam: Atlantis Press, 2014
23 K P HartJ NagataJ E Vaughan. Encyclopedia of General Topology. Amsterdam: Elsevier Science Publishers B V, 2004
24 F Hausdorff. Grundzüge der Mengenlehre. Leipzig: Veriag von Veit und Comp, 1914 (in German)
25 N Lašnev. Closed images of metric spaces. Dokl Akad Nauk SSSR 1966; 170: 505–507
26 F C Lin. σ–point–discrete cs*–networks and wcs*–networks. J Adv Research Pure Math 2010; 2(3): 7–12
27 F C Lin. Topological algebra and generalized metric spaces. Xiamen: Xiamen Univ Press, 2012
28 F C Lin, S Lin. Some notes on sequence-covering maps. J Math Res Appl 2014; 34(1): 97–104
29 F C Lin, S Lin. Sequence-covering maps on generalized metric spaces. Houston J Math 2014; 40(3): 927–943
30 F C Lin, R X Shen. Some notes on σ-point-discrete sn-networks. Adv Math (China) 2010; 39(2): 212–216
31 S Lin. On normal separable ℵ-spaces. Questions Answers Gen Topology 1987; 5: 249–254
32 S Lin. A study of pseudobases. Questions Answers Gen Topology 1988; 6: 81–97
33 S Lin. On sequence-covering s-mappings. Adv Math (China) 1996; 25(6): 548–551
34 S Lin. A note on the Arens’ space and sequential fan. Topology Appl 1997; 81(3): 185–196
35 S Lin. Point countable coverings and sequential coverings mappings. Beijing: Science Press, 2002
36 S Lin. Generalized metric spaces and mappings. Beijing: Science Press, 2007
37 S Lin, Y Tanaka. Point-countable k-networks, closed maps, and related results. Topology Appl 1994; 59(1): 79–86
38 Y Lin, L Yan. A note on spaces with a σ-compact-finite weak base. Tsukuba J Math 2004; 28(1): 85–91
39 C Liu. Spaces with a σ-compact finite k-network. Questions Answers Gen Topology 1992; 10: 81–87
40 C Liu. Notes on g-metrizable spaces. Topology Proc 2005; 29(1): 207–215
41 C Liu. On weak bases. Topology Appl 2005; 150(13): 91–99
42 C Liu, S Lin. On countable-to-one maps. Topology Appl 2007; 154(2): 449–454
43 C Liu, S Lin, L D Ludwig. Spaces with a σ-point-discrete weak base. Tsukuba J Math 2008; 32(1): 165–177
44 C Liu, L D Ludwig. Nagata-Smirnov revisited: spaces with σ-WHCP bases. Topology Proc 2005; 29(2): 559–565
45 E A Michael. Another note on paracompact spaces. Proc Amer Math Soc 1957; 8(4): 822–828
46 E A Michael. A quintuple quotient quest. General Topology Appl 1972; 2(2): 91–138
47 K MoritaJ Nagata. Topics in General Topology. Amsterdam: Elsevier Science Publishers B V, 1989
48 J Nagata. On a necessary and sufficient condition of metrizability. J Inst Polytech Osaka City Univ 1950; 1(2A): 93–100
49 A Okuyama. On a generalization of Σ-spaces. Pacific J Math 1972; 42(2): 485–495
50 P O’Meara. On paracompactness in function spaces with the compact open topology. Proc Amer Math Soc 1971; 29(1): 183–189
51 Y Shang, S Z Wang. The discussion of spaces with σ-WHCP or σ-compact-finite sets. J Capital Norm Univ Nat Sci Ed 2007; 28(6): 16–21
52 R Shen, S Lin. Spaces with σ-point-discrete ℵ0-weak bases. Appl Math J Chinese Univ 2013; 28B(l): 116–126
53 R Sirois-Dumais. Quasi- and weakly-quasi-firs seven-countable spaces. Topology Appl 1980; 11(2): 223–230
54 M Smirnov. On the metrization of topological spaces. Uspekhi Mat Nauk 1951; 6(6): 100–111
55 P Urysohn. Zurn Metrisationsproblem. Math Ann 1925; 94(1): 309–315
56 E K Van Douwen. Simultaneous extension of continuous functions. PhD Thesis. Amsterdam: Free Univ of Amsterdam, 1975
57 Committee of the Encyclopedia of China Editorial. Encyclopedia of China (Mathematics Vol). Beijing: Encyclopedia of China Press, 1988
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed