Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2024, Vol. 19 Issue (1) : 25-35    https://doi.org/10.3868/s140-DDD-024-0005-x
Turán number of Berge linear forests in uniform hypergraphs
Liying KANG(), Jiawei HUANG(), Yisai XUE(), Zhiwei WU()
Department of Mathematics, Shanghai University, Shanghai 200444, China
 Download: PDF(495 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Let F be a graph and H be a hypergraph. We say that H contains a Berge-F If there exists a bijection φ: E(F)→E(H) such that for eE(F), eφ(e), and the Turán number of Berge-F is defined to be the maximum number of edges in an r-uniform hypergraph of order n that is Berge-F-free, denoted by exr(n, Berge-F). A linear forest is a graph whose connected components are all paths or isolated vertices. Let Ln,k be the family of all linear forests of n vertices with k edges. In this paper, Turán number of Berge-Ln,k in an r-uniform hypergraph is studied. When rk +1 and 3 rk121, we determine the exact value of exr(n, Berge-Ln,k) respectively. When k12rk, we determine the upper bound of exr(n, Berge-Ln,k).

Keywords Uniform hypergraph      Berge hypergraph      linear forest      Turán number     
Corresponding Author(s): Liying KANG,Jiawei HUANG,Yisai XUE,Zhiwei WU   
Online First Date: 31 May 2024    Issue Date: 03 June 2024
 Cite this article:   
Liying KANG,Jiawei HUANG,Yisai XUE, et al. Turán number of Berge linear forests in uniform hypergraphs[J]. Front. Math. China, 2024, 19(1): 25-35.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.3868/s140-DDD-024-0005-x
https://academic.hep.com.cn/fmc/EN/Y2024/V19/I1/25
1 J A Bondy, V Chvátal. A method in graph theory. Discrete Math 1976; 15(2): 111–135
2 Z Füredi, A Kostochka, R Luo. Avoiding long Berge cycles. J Combin Theory Ser B 2019; 137: 55–64
3 D Gerbner, C Methuku. General lemmas for Berge-Turan hypergraph problems. European J Combin 2020; 86: 103082
4 D Gerbner, A Methuku, M Vizer. Asymptotics for the Turán number of Berge-K2, t. Combin Theory Ser B 2019; 137: 264–290
5 D Gerbner, C Palmer. Extremal results for Berge hypergraphs. SIAM J Discrete Math 2017; 31(4): 2314–2327
6 A Gyárfás. The Turán number of Berge-K4 in triple systems. SIAM J Discrete Math 2019; 33(1): 383–392
7 E Györi. Triangle-free hypergraphs. Combin Probab Comput 2006; 15(1/2): 185–191
8 E Györi, G Y Katona, N Lemons. Hypergraph extensions of the Erdös-Gallai theorem. European J Combin 2016; 58: 238–246
9 E Györi, N Lemons. Hypergraphs with no cycle of a given length. Combin Probab Comput 2012; 21(1/2): 193–201
10 L Y Kang, Z Y Ni, E F Shan. Turán number of Berge matchings in uniform hypergraphs. Discrete Math 2022; 345(8): 112901
11 O Khormali, C Palmer. Turán numbers for hypergraph star forests. European J Combin 2022; 102: 103506
12 F Lazebnik, J Verstraëte. On hypergraphs of girth five. Electron J Combin 2003; 10: R25
13 B Ning, J Wang. The formula for Turan number of spanning linear forests. Discrete Math 2020; 343(8): 111924
14 L P Zhang, L G Wang, J L Zhou. The generalized Turán number of spanning linear forests. Graphs Combin 2022; 38(2): 40
15 H Zhu, L Y Kang, Z Y Ni, E F Shan. The Turán number of Berge-K4 in 3-uniform hypergraphs. SIAM J Discrete Math 2020; 34(3): 1485–1492
[1] Xiying YUAN, Xuelian SI, Li ZHANG. Ordering uniform supertrees by their spectral radii[J]. Front. Math. China, 2017, 12(6): 1393-1408.
[2] Dongmei CHEN, Zhibing CHEN, Xiao-Dong ZHANG. Spectral radius of uniform hypergraphs and degree sequences[J]. Front. Math. China, 2017, 12(6): 1279-1288.
[3] Xie-Bin CHEN. Fault-free Hamiltonian cycles passing through a prescribed linear forest in 3-ary n-cube with faulty edges[J]. Front Math Chin, 2014, 9(1): 17-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed