| 1 |
A Asinowski, G Barequet, M Bousquet-Mélou, T Mansour, R Y Pinter. Orders induced by segments in floorplans and (2-14-3, 3-41-2)-avoiding permutations. Electron J Combin 2013; 20(2): 35
|
| 2 |
E Babson, E Steingrímsson. Generalized permutation patterns and a classification of the Mahoniar statistics. Sém Lothar Combin 2000; 44: B44b
|
| 3 |
J Backelin, J West, G C Xin. Wilf-equivalence for singleton classes. Adv in Appl Math 2007; 38(2): 133–148
|
| 4 |
M Barnabei, F Bonetti, N Castronuovo, M Silimbani. Pattern avoiding alternating involutions. Enumer Comb Appl 2023; 3(1): S2R4
|
| 5 |
A Bernini, L Ferrari, R Pinzani. Enumerating permutations avoiding three Babson-Steingrímssont patterns. Ann Comb 2005; 9(2): 137–162
|
| 6 |
A Bernini, E Pergola. Enumerating permutations avoiding more than three Babson-Steingrímsson Patterns. J Integer Seq 2007; 10(6): 07.6.4
|
| 7 |
M Bóna. Exact enumeration of 1342-avoiding permutations: a close link with labeled trees and planar maps. J Combin Theory Ser A 1997; 80(2): 257–272
|
| 8 |
M Bóna. New records in Stanley-Wilf limts. European J Combin 2007; 28(1): 75–85
|
| 9 |
M Bóna. On a family of conjectures of Joel Lewis on alternating permutations. Graphs Combin 2014; 30(3): 521–526
|
| 10 |
M Bousquet-Mélou, S Butler. Forest-like permutations. Ann Combin 2007; 11(3/4): 335–354
|
| 11 |
M Bousquet-Mélou, A Claesson, M Dukes, S Kitaev. (2+2)-free posets, ascent sequences and patterm avoiding permutations. J Combin Theory Ser A 2010; 117(7): 884–909
|
| 12 |
A Burstein. Restricted Dumont permutations. Ann Comb 2005; 9(3): 269–280
|
| 13 |
A Burstein, S Elizalde, T Mansour. Restricted Dumont permutations, Dyck paths, and noncrossing partitions. Discrete Math 2006; 306(22): 2851–2869
|
| 14 |
A Burstein, O Jones. Enumeration of Dumont permutations avoiding certain four-letter patterns. Discrete Math Theor Comput Sci 2021/2022; 22(2): 7
|
| 15 |
A Burstein, M Josuat-Vergès, W Stromquist. New Dumont permutations. Pure Math Appl (PU M A) 2010; 21(2): 177–206
|
| 16 |
A BursteinC Ofodile. Dumont permutations containing one occurrence of certain three- and four- letter patterns. In: 9th International Conference on Permutation Patterns, June 20‒24, 2011, Sam Luis Obispo, CA
|
| 17 |
A BursteinW Stromquist. Dumont permutations of the third kind. In: 19th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 20077), July, 2007, Tianjin
|
| 18 |
D Callan. A Wilf equivalence related to two stack sortable permutations. 2005, arXiv: math/0510211
|
| 19 |
D Callan. A combinatorial interpretation of the eigensequence for composition. J Integer Seq 2006; 9(1): 06.1.4
|
| 20 |
D Callan. A bijection to count (1-23-4)-avoiding permutations. 2010
|
| 21 |
J N Chen, Y C Chen, R D P W. On pattern avoiding alternating permutations. European J Combin 2014; 40: 11–25
|
| 22 |
W Y C Chen, E Y P Deng, L L M Yang. Riordan paths and derangements. Discrete Math 2008; 308(11): 2222–2227
|
| 23 |
S Chern. On 0012-avoiding inversion sequences and a conjecture of Lin and Ma. Quaest Math 2023; 46(4): 681–694
|
| 24 |
S Chern, S Fu, Z Lin. Burstein’s permutation conjecture, Hong and Li’s inversion sequence conjecture and restricted Eulerian distributions. Proc Edinb Math Soc (2) 2023; 66(4): 1179–1201
|
| 25 |
A Claesson. Generalized pattern avoidance. European J Combin 2001; 22(7): 961–971
|
| 26 |
A Claesson, T Mansour. Counting occurrences of a pattern of type (1, 2) or (2, 1) in permutations. Adv Appl Math 2002; 29(2): 293–310
|
| 27 |
A Claesson, T Mansour. Enumerating permutations avoiding a pair of Babson-Steingrímsson patterns. Ars Combin 2005; 77: 17–31
|
| 28 |
A R Conway, A J Guttmann. On 1324-avoiding permutations. Adv Appl Math 2015; 64: 50–69
|
| 29 |
A R Conway, A J Guttmann, P Zinn-Justin. 1324-avoiding permutations revisited. Adv Appl Math 2018; 96: 312–333
|
| 30 |
S Corteel, M A Martinez, C D Savage, M Weselcouch. Patterns in inversion sequences I. Discret Math Theor Comput Sci 2016; 18(2): 2
|
| 31 |
D Dumont. Interprétations combinatoires des nombres de Genocchi. Duke Math J 1974; 41: 305–318
|
| 32 |
S Elizalde. Asymptotic enumeration of permutations avoiding generalized patterns. Adv Appl Math 2006; 36(2): 138–155
|
| 33 |
S Elizalde. Generating trees for permutations avoiding generalized patterns. Ann Comb 2007; 11(3/4): 435–458
|
| 34 |
S Elizalde, M Noy. Consecutive patterns in permutations. Adv Appl Math 2003; 30(1/2): 110–125
|
| 35 |
I M Gessel. Symmetric functions and P-recursiveness. J Combin Theory Ser A 1990; 53(2): 257–285
|
| 36 |
L T Hong, R Li. Length-four pattern avoidance in inversion sequences. Electron J Combin 2022; 29(4): 4.37
|
| 37 |
S Kitaev. Partially ordered generalized patterns. Discrete Math 2005; 298(1/2/3): 212–229
|
| 38 |
S Kitaev, J Remmel. Classifying descents according to equivalence mod k. Electron J Combin 2006; 13(1): 64
|
| 39 |
S Kitaev, J Remmel. Classifying descents according to parity. Ann Combin 2007; 11(2): 173–193
|
| 40 |
D E Knuth. The Art of Computer Programming, Vol 3, Sorting and Searching, Reading. MA: Addison-Wesley, 1973
|
| 41 |
I Kotsireas, T Mansour, G Yıldırım. An algorithmic approach based on generating trees for enumerating pattern-avoiding inversion sequences. J Symbolic Comput 2024; 120: 102231
|
| 42 |
D Kremer, W C Shiu. Finite transition matrices for permutations avoiding pairs of length four patterns. Discrete Math 2003; 268(1/2/3): 171–183
|
| 43 |
J B Lewis. Alternating, pattern-avoiding permutations. Electron J Combin 2009; 16(1): Note 7, 8
|
| 44 |
J B Lewis. Pattern avoidance for alternating permutations and Young tableaux. J Combin Theory Ser A 2011; 118(4): 1436–1450
|
| 45 |
J B Lewis. Generating trees and pattern avoidance in alternating permutations. Electron J Combin 2012; 19(1): 21, 21
|
| 46 |
Z C Lin, D G L Wang, T Y Zhao. A decomposition of ballot permutations, pattern avoidance and Gessel walks. J Combin Theory Ser A 2022; 191: 105644
|
| 47 |
P A MacMahon. Combinatory Analysis, Volumes I, II. Mineola, NY: Dover Publications, Inc, 2004
|
| 48 |
T Mansour. Restricted 132-alternating permutations and Chebyshev polynomials. Ann Comb 2003; 7(2): 201–227
|
| 49 |
T Mansour. Restricted 132-Dumont permutations. Australas J Combin 2004; 29: 103–117
|
| 50 |
T Mansour. The enumeration of permutations whose posets have a maximum element. Adv Appl Math 2006; 37(4): 434–442
|
| 51 |
T Mansour. Generating trees for 0021-avoiding inversion sequences and a conjecture of Hong and Li. Discrete Math Lett 2023; 12: 11–14
|
| 52 |
T MansourC Nassau. On Stanley-Wilf limit of the pattern 1324. Adv Appl Math, 2021: 130
|
| 53 |
T Mansour, M Shattuck. Pattern avoidance in inversion sequences. Pure Math Appl (PU M A) 2015; 25(2): 157–176
|
| 54 |
T MansourG Yıldırım. Inversion sequences avoiding 021 and another pattern of length four. 2023
|
| 55 |
A Marcus, G Tardos. Excluded permutation matrices and the Stanley-Wilf conjecture. J Combin Theory Ser A 2004; 107(1): 1531160
|
| 56 |
M Martinez, C Savage. Patterns in inversion sequences II: inversion sequences avoiding triples of relations. J Integer Seq 2018; 21(2): 18.2.2
|
| 57 |
J Noonan, D Zeilberger. The enumeration of permutations with a prescribed number of “forbidden” patterns. Adv Appl Math 1996; 17(4): 381–407
|
| 58 |
C O Ofodile. The enumeration of Dumont permutations with few occurrences of three and four letter patterns. Ph D Thesis. Washington, DC: Howard University, 2011
|
| 59 |
L Pudwell. Enumeration schemes for words avoiding permutations. In: Permutation Patterns, London Math Soc Lecture Note Ser, Vol 376. Cambridge: Cambridge University Press, 2010, 193–211
|
| 60 |
A Regev. Asymptotic values for degrees associated with strips of Young diagrams. Adv Math 1981; 41(2): 115–136
|
| 61 |
A Reifegerste. A generalization of Simion-Schmidt’s bijection for restricted permutations. Electron J Combin 2003; 9(2): 14
|
| 62 |
R Simion, F W Schmidt. Restricted permutations. European J Combin 1985; 6(4): 383–406
|
| 63 |
R Simion, D Stanton. Octabasic Laguerre polynomials and permutation statistics. J Comput Appl Math 1996; 68(1/2): 297–329
|
| 64 |
E Steingrímsson. Generalized permutation patterns—a short survey. In: Permutation Patterns, London Math Soc Lecture Note Ser, Vol 376. Cambridge: Cambridge University Press, 2010, 137–152
|
| 65 |
N Sun. A complete enumeration of ballot permutations avoiding sets of small patterns. Enumer Comb Appl 2023; 3(1): S2R6
|
| 66 |
B Testart. Inversion sequences avoiding the pattern 010. 2022, arXiv:2212.07222
|
| 67 |
J West. Permutations with forbidden subsequences and stack-sortable permutations. Ph D Thesis. Cambridge, MA: Massachusetts Institute of Technology, 1990
|
| 68 |
J West. Generating trees and the Catalan and Schröder numbers. DiscreteMath 1995; 146(1/2/3): 247–262
|
| 69 |
Y X Xu, S H F Yan. Alternating permutations with restrictions and standard Young tableaux. Electron J Combin 2012; 19(2): 49
|
| 70 |
C Y Yan, Z C Lin. Inversion sequences avoiding pairs of patterns. Discrete Math Theor Comput Sci 2020/2021; 22(1): 23
|
| 71 |
S H F Yan, L T Wang, R D P Zhou. On refinements of Wilf-equivalence for involutions. J Algebraic Combin 2023; 58(1): 69–94
|