Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2024, Vol. 19 Issue (5) : 247-254    https://doi.org/10.3868/s140-DDD-024-0015-x
The q-log-concavity of q-ballot numbers
Xinmiao LIU, Jiangxia HOU(), Fengxia LIU
College of Mathematics and Systems Science, Xinjiang University, Urumqi 830046, China
 Download: PDF(827 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Carlitz and Riordan introduced the q-analogue fq(n,k) of ballot numbers. In this paper, using the combinatorial interpretation of fq(n,k) and constructing injections, we prove that fq(n,k) is q-log-concave with respect to n and k, i.e., all coefficients of the polynomials fq(n,k)2fq(n+1,k)fq(n1,k) and fq(n,k)2fq(n,k+1)fq(n,k1) are non-negative for 0<k<n.

Keywords q-log-concavity      q-ballot number      lattice path      inversion     
Corresponding Author(s): Jiangxia HOU   
Online First Date: 15 October 2024    Issue Date: 31 October 2024
 Cite this article:   
Xinmiao LIU,Jiangxia HOU,Fengxia LIU. The q-log-concavity of q-ballot numbers[J]. Front. Math. China, 2024, 19(5): 247-254.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.3868/s140-DDD-024-0015-x
https://academic.hep.com.cn/fmc/EN/Y2024/V19/I5/247
Fig.1  Lattice path contained in P2,1
n k
0 1 2 3
0 1
1 1 q
2 1 q+q2 q2+q3
3 1 q+q2+q3 q2+q3+2q4+q5 q3+q4+2q5+q6
Tab.1  fq(n,k),0kn3
Fig.2  Injection from (11211221, 121212) to (1121122, 1212121)
Fig.3  Injection from (11121122, 121212) to (1112212, 1211122)
1 2
πR a+1 i?a
σR a i?a
πL n?a k?i+a
σL n?a+1 k?i+a
Tab.2  Count of digits 1 and 2 in πL,πR,σL, and σR
Fig.4  Injection from (112211212, 1121112) to (11221121, 11211122)
Fig.5  Injection from (112212121, 1121112) to (11221112, 11212121)
1 L M Butler. The q-log-concavity of q-binomial coefficients. J Combin Theory Ser A 1990; 54(1): 54–63
2 L Carlitz. Sequences, paths, ballot numbers. Fibonacci Quart 1972; 10(5): 531–549
3 L Carlitz, J Riordan. Two element lattice permutation numbers and their q-generalization. Duke Math J 1964; 31(3): 371–388
4 F Chapoton, J Zeng. A curious polynomial interpolation of Carlitz–Riordan’s q-ballot numbers. Contrib Discrete Math 2015; 10(1): 99–112
5 W Y C Chen, L X W Wang, A L B Yang. Schur positivity and the q-log-convexity of the Narayana polynomials. J Algebraic Combin 2010; 32(3): 303–338
6 L Comtet. Advanced Combinatorics. Dordrecht: D Reidel, 1974
7 K Q Ji. The q-log-concavity and unimodality of q-Kaplansky numbers. Discrete Math 2022; 345(6): 112821
8 B E Sagan. Log concave sequences of symmetric functions and analogs of the Jacobi–Trudi determinants. Trans Amer Math Soc 1992; 329(2): 795–811
9 B E Sagan. Inductive proofs of q-log concavity. Discrete Math 1992; 99(1/2/3): 298–306
10 S Spiro. Ballot permutations and odd order permutations. Discrete Math 2020; 343(6): 111869
11 R P Stanley. Log-concave and unimodal sequences in algebra, combinatorics, and geometry. In: Graph Theory and Its Applications: East and West (Jinan, 1986), Annals of the New York Academy of Sciences, Vol 576. New York: New York Acad Sci, 1989, 500–535
12 D G L Wang, J J R Zhang. A Toeplitz property of ballot permutations and odd order permutations. Electron J Combin 2022; 27(2): 2.55
13 D G L Wang, T Y Zhao. The peak and descent statistics over ballot permutations. Discrete Math 2022; 345(3): 112739
[1] Jishe FENG, Xiaomeng WANG, Xiaolu GAO, Zhuo PAN. The research and progress of the enumeration of lattice paths[J]. Front. Math. China, 2022, 17(5): 747-766.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed