We implemented a new protocol — multiphase dynamic helical scan to acquire CT angiography (CTA) and whole brain CT perfusion (CTP) images simultaneously with single scan on 16 multidetector CT (MDCT). A total of 90 patients who were randomly assigned into 3 groups were included in our study. Each group underwent CT scan by using the new protocol, traditional CTA and CTP protocol, respectively. The image quality of CTA, the CTP parameter values and the X-ray doses were measured and compared between the new protocol and the traditional protocols. There was no statistically significant difference in the CTA image quality between the above methods (P=0.55). For CTP parameters, the new protocol tended to overestimate the blood volume (BV) and blood flow (BF) value, and to underestimate the mean transit time (MTT) value compared with the traditional method. However, there was no statistically significant difference in BV, BF, and MTT value between the two methods except permeability surface (PS) (P>0.05). The volume CT dose index (CTDIvol) and dose length product (DLP) of our protocol were lower than the traditional one. The new protocol can obtain valuable diagnostic information in a shorter time without significant compromise in image quality. In addition, it reduces the radiation dose as well as contrast medium usage on the patient.
. Simultaneous acquisition of CT angiography and whole brain CT perfusion images by using multiphase dynamic helical scan on 16 MDCT[J]. Frontiers of Medicine in China, 2009, 3(2): 230-235.
Weiwei CHEN, Jianpin QI, Wenzhen ZHU, Wenhua HUANG, Jinmei SONG. Simultaneous acquisition of CT angiography and whole brain CT perfusion images by using multiphase dynamic helical scan on 16 MDCT. Front Med Chin, 2009, 3(2): 230-235.
volume of contrast medium/mLspeed of contrast medium/mL·s-1
50
80
50
3.5
3.5
3.5
CTDIvol total/mGy
161.98*
71.43
636.25
DLP total/mGy·cm
2394.0*
1147.06
1272.5
Tab.1
Fig.1
Fig.2
normal cortical gray matter
normal white matter
head of the caudate nucleus
lentiform nuclei
BV
group 1
2.96
0.91
1.69
2.04
group 3
2.94
0.91
1.61
1.99
P value
0.879
0.989
0.24
0.148
BF
group 1
82.25
19.22
46.42
60.77
group 3
80.75
17.91
44.08
60.64
P value
0.78
0.162
0.33
0.946
MTT
group 1
2.56
5.01
2.77
2.31
group 3
2.90
5.06
2.8
2.31
P value
0.68
0.857
0.798
0.921
PS
group 1
1.81
0.83
1.59
1.01
group 3
1.15
0.5
0.52
0.613
P value
0.01
0.000
0.000
0.000
Tab.2
Fig.3
groups
main arteries
first-order branches
second-order branches
third-order branches
2
1
0
2
1
0
2
1
0
2
1
0
1
25
5
0
30
0
0
28
2
0
26
3
1
2
28
2
0
30
0
0
29
1
0
28
2
0
P value
0.232
1
0.557
0.378
Tab.3
1
Xue J, Gao P, Wang X, Liao X, Wang Y, Wang Y. Ischemic lesion typing on computed tomography perfusion and computed tomography angiography in hyperacute ischemic stroke: a preliminary study. Neurol Res , 2008, 30(4): 337-340 doi: 10.1179/174313208X300297
Scaroni R, Tambasco N, Cardaioli G, Parnetti L, Paloni F, Boranga B, Pelliccioli G P. Multimodal use of computed tomography in early acute stroke, part 2. Clin Exp Hypertens , 2006, 28(3,4): 427-431
4
Murphy B D, Fox A J, Lee D H, Sahlas D J, Black S E, Hogan M J, Coutts S B, Demchuk A M, Goyal M, Aviv R I, Symons S, Gulka I B, Beletsky V, Pelz D, Hachinski V, Chan R, Lee T Y. Identification of penumbra and infarct in acute ischemic stroke using computed tomography perfusion-derived blood flow and blood volume measurements. Stroke , 2006, 37(7): 1771-1777 doi: 10.1161/01.STR.0000227243.96808.53
5
Zhang Q B, Feng X Y, He H J, Jiang B D. Multi-slice helical CT perfusion imaging in evaluating intracranial neoplasms and tumor-like lesions. Zhonghua Zhong Liu Za Zhi , 2007, 29(2): 131-135 (in Chinese)
6
Cianfoni A, Colosimo C, Basile M, Wintermark M, Bonomo L. Brain perfusion CT: principles, technique and clinical applications. Radiol Med , 2007, 112(8): 1225-1243 doi: 10.1007/s11547-007-0219-4
7
Schramm P. High-concentration contrast media in neurological multidetector-row CT applications: implications for improved patient management in neurology and neurosurgery. Neuroradiology , 2007, 49(Suppl1): S35-45 doi: 10.1007/s00234-007-1471-3
8
Eastwood J D, Lev M H, Azhari T, Lee T Y, Barboriak D P, Delong D M, Fitzek C, Herzau M, Wintermark M, Meuli R, Brazier D, Provenzale J M. CT perfusion scanning with deconvolution analysis: pilot study in patients with acute middle cerebral artery stroke. Radiology , 2002, 222(1): 227-236 doi: 10.1148/radiol.2221010471
9
Scharf J, Brockmann M A, Daffertshofer M, Diepers M, Neumaier-Probst E, Weiss C, Paschke T, Groden C. Improvement of sensitivity and inter-rater reliability to detect acute stroke by dynamic perfusion computed tomography and computed tomography angiography. J Comput Assist Tomogr , 2006, 30(1): 105-110 doi: 10.1097/01.rct.0000187417.15321.ca
10
Rydberg J, Buckwalter K A, Caldemeyer K S, Phillips M D, Conces D J Jr, Aisen A M, Persohn S A, Kopecky K K. Multisection CT: Scanning Techniques and Clinical Applications. Radiographics , 2000, 20(6): 1787-1806
11
Wintermark M, Fischbein N J, Smith W S, Ko N U, Quist M, Dillon W P. Accuracy of dynamic perfusion CT with deconvolution in detecting acute hemispheric stroke. AJNR Am J Neuroradiol , 2005, 26(1): 104-112
12
Schramm P, Schellinger P D, Klotz E, Kallenberg K, Fiebach J B, Külkens S, Heiland S, Knauth M, Sartor K. Comparison of perfusion computed tomography and computed tomography angiography source images with perfusion-weighted imaging and diffusion-weighted imaging in patients with acute stroke of less than 6 hours’ duration. Stroke , 2004, 35(7): 1652-1658 doi: 10.1161/01.STR.0000131271.54098.22
13
Youn S W, Kim J H, Weon Y C, Kim S H, Han M K, Bae H J. Perfusion CT of the brain using 40-mm-wide detector and toggling table technique for initial imaging of acute stroke. AJR Am J Roentgenol , 2008, 191(3): W120-126 doi: 10.2214/AJR.07.2519
14
Laghi A. Multidetector CT (64 Slices) of the liver: examination techniques. Eur Radiol , 2007, 17(3): 675-683 doi: 10.1007/s00330-006-0405-0
15
Eastwood J D, Lev M H, Provenzale J M. Perfusion CT with iodinated contrast material. Am J Roentgenol , 2003, 180(1): 3-12
16
Ezzeddine M A, Lev M H, McDonald C T, Rordorf G, Oliveira-Filho J, Aksoy F G, Farkas J, Segal A Z, Schwamm L H, Gonzalez R G, Koroshetz W J. CT angiography with whole brain perfused blood volume imaging: added clinical value in the assessment of acute stroke. Stroke , 2002, 33(4): 959-966 doi: 10.1161/hs0402.105388
17
Lev M H, Segal A Z, Farkas J, Hossain S T, Putman C, Hunter G J, Budzik R, Harris G J, Buonanno F S, Ezzeddine M A, Chang Y, Koroshetz W J, Gonzalez R G, Schwamm L H. Utility of perfusion-weighted CT imaging in acute middle cerebral artery stroke treated with intra-arterial thrombolysis: prediction of final infarct volume and clinical outcome. Stroke , 2001, 32(9): 2021-2028 doi: 10.1161/hs0901.095680
18
Dittrich R, Akdeniz S, Kloska S P, Fischer T, Ritter M A, Seidensticker P, Heindel W, Ringelstein E B, Nabavi D G. Low rate of contrast-induced nephropathy after CT perfusion and CT angiography in acute stroke patients. J Neurol , 2007, 254(11): 1491-1497 doi: 10.1007/s00415-007-0528-5
19
Roberts H C, Roberts T P, Smith W S, Lee T J, Fischbein N J, Dillon W P .Multisection dynamic CT perfusion for acute cerebral ischemia: the "toggling-table" technique. Am J Neuroradiol , 2001, 22(6): 1077-1080
20
Wintermark M, Smith W S, Ko N U, Quist M, Schnyder P, Dillon W P. Dynamic perfusion CT: optimizing the temporal resolution and contrast volume for calculation of perfusion CT parameters in stroke patients. Am J Neuroradiol , 2004, 25(5): 720-729